Quantitative three-dimensional characterization of pearlite spheroidization

We investigated the pearlite spheroidization of a 0.8 mass% C–Fe steel under 700 °C static annealing conditions using a combination of computer-aided three-dimensional (3-D) tomography and electron back-scattered diffraction. The holes present in naturally grown cementite lamellae cause shape instab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2010-08, Vol.58 (14), p.4849-4858
Hauptverfasser: Wang, Yuan-Tsung, Adachi, Yoshitaka, Nakajima, Kiyomi, Sugimoto, Yoshimasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4858
container_issue 14
container_start_page 4849
container_title Acta materialia
container_volume 58
creator Wang, Yuan-Tsung
Adachi, Yoshitaka
Nakajima, Kiyomi
Sugimoto, Yoshimasa
description We investigated the pearlite spheroidization of a 0.8 mass% C–Fe steel under 700 °C static annealing conditions using a combination of computer-aided three-dimensional (3-D) tomography and electron back-scattered diffraction. The holes present in naturally grown cementite lamellae cause shape instability and induce shape evolution of the lamellar structure during spheroidization. 3-D visualization demonstrated that the intrinsic holes play an important role in the initiation and development of pearlite spheroidization. The hole coalescence and expansion causes the break-up up of large cementite lamellae into several long narrow ribbons. Furthermore, the growth mechanism of inter-hole coalescence is related to the ratio of half the inter-hole distance on a cementite lamella to the thickness of that lamella. The driving force for hole growth is either the difference in surface energy or the curvature between the hole edges and the adjacent flat surface of the lamella. The morphologies of cementite ribbons depend on the hole expansion position on cementite lamella, and can change their shape to cylinders or small spheres by Rayleigh’s perturbation process after prolonged spheroidization.
doi_str_mv 10.1016/j.actamat.2010.05.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787047307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645410002983</els_id><sourcerecordid>787047307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-ac1dbc63276f0ca7236e282a9263a637c7721a221f1b0ea639ffcb5664256303</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_QdgX8WnXXDZJ90lEvGFBhL6HaXaWpuzNJC3orzeli68-zXDmmzPMIeSa0YJRpu62BdgIHcSC06RRWVAuTsiMLbTIeSnFaeqFrHJVyvKcXISwpZRxXdIZef_cQR9dhOj2mMWNR8xr12Ef3NBDm9kN-OSO3v0kZOizoclGBN-6iFkYN-gHV0-zS3LWQBvwaqpzsnp-Wj2-5suPl7fHh2VuS6FjDpbVa6sE16qhFjQXCvmCQ8WVACW01Zoz4Jw1bE0xKVXT2LVUquRSCSrm5PZoO_rha4chms4Fi20LPQ67YPRC01ILqhMpj6T1QwgeGzN614H_NoyaQ3Rma6bozCE6Q6VJ0aW9m-kCBAtt46G3Lvwtc15VSiZwTu6PHKZv9w69CdZhb7F2Hm009eD-ufQLN2eIDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787047307</pqid></control><display><type>article</type><title>Quantitative three-dimensional characterization of pearlite spheroidization</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Yuan-Tsung ; Adachi, Yoshitaka ; Nakajima, Kiyomi ; Sugimoto, Yoshimasa</creator><creatorcontrib>Wang, Yuan-Tsung ; Adachi, Yoshitaka ; Nakajima, Kiyomi ; Sugimoto, Yoshimasa</creatorcontrib><description>We investigated the pearlite spheroidization of a 0.8 mass% C–Fe steel under 700 °C static annealing conditions using a combination of computer-aided three-dimensional (3-D) tomography and electron back-scattered diffraction. The holes present in naturally grown cementite lamellae cause shape instability and induce shape evolution of the lamellar structure during spheroidization. 3-D visualization demonstrated that the intrinsic holes play an important role in the initiation and development of pearlite spheroidization. The hole coalescence and expansion causes the break-up up of large cementite lamellae into several long narrow ribbons. Furthermore, the growth mechanism of inter-hole coalescence is related to the ratio of half the inter-hole distance on a cementite lamella to the thickness of that lamella. The driving force for hole growth is either the difference in surface energy or the curvature between the hole edges and the adjacent flat surface of the lamella. The morphologies of cementite ribbons depend on the hole expansion position on cementite lamella, and can change their shape to cylinders or small spheres by Rayleigh’s perturbation process after prolonged spheroidization.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2010.05.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>3-D tomography ; Applied sciences ; Cementite ; Cementite lamella ; Coalescence ; Coalescing ; Curvature ; Exact sciences and technology ; Hole ; Lamella ; Lamellar structure ; Metals. Metallurgy ; Pearlite ; Ribbons ; Spheroidizing ; Surface energy</subject><ispartof>Acta materialia, 2010-08, Vol.58 (14), p.4849-4858</ispartof><rights>2010 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-ac1dbc63276f0ca7236e282a9263a637c7721a221f1b0ea639ffcb5664256303</citedby><cites>FETCH-LOGICAL-c437t-ac1dbc63276f0ca7236e282a9263a637c7721a221f1b0ea639ffcb5664256303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645410002983$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22996502$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yuan-Tsung</creatorcontrib><creatorcontrib>Adachi, Yoshitaka</creatorcontrib><creatorcontrib>Nakajima, Kiyomi</creatorcontrib><creatorcontrib>Sugimoto, Yoshimasa</creatorcontrib><title>Quantitative three-dimensional characterization of pearlite spheroidization</title><title>Acta materialia</title><description>We investigated the pearlite spheroidization of a 0.8 mass% C–Fe steel under 700 °C static annealing conditions using a combination of computer-aided three-dimensional (3-D) tomography and electron back-scattered diffraction. The holes present in naturally grown cementite lamellae cause shape instability and induce shape evolution of the lamellar structure during spheroidization. 3-D visualization demonstrated that the intrinsic holes play an important role in the initiation and development of pearlite spheroidization. The hole coalescence and expansion causes the break-up up of large cementite lamellae into several long narrow ribbons. Furthermore, the growth mechanism of inter-hole coalescence is related to the ratio of half the inter-hole distance on a cementite lamella to the thickness of that lamella. The driving force for hole growth is either the difference in surface energy or the curvature between the hole edges and the adjacent flat surface of the lamella. The morphologies of cementite ribbons depend on the hole expansion position on cementite lamella, and can change their shape to cylinders or small spheres by Rayleigh’s perturbation process after prolonged spheroidization.</description><subject>3-D tomography</subject><subject>Applied sciences</subject><subject>Cementite</subject><subject>Cementite lamella</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>Curvature</subject><subject>Exact sciences and technology</subject><subject>Hole</subject><subject>Lamella</subject><subject>Lamellar structure</subject><subject>Metals. Metallurgy</subject><subject>Pearlite</subject><subject>Ribbons</subject><subject>Spheroidizing</subject><subject>Surface energy</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKs_QdgX8WnXXDZJ90lEvGFBhL6HaXaWpuzNJC3orzeli68-zXDmmzPMIeSa0YJRpu62BdgIHcSC06RRWVAuTsiMLbTIeSnFaeqFrHJVyvKcXISwpZRxXdIZef_cQR9dhOj2mMWNR8xr12Ef3NBDm9kN-OSO3v0kZOizoclGBN-6iFkYN-gHV0-zS3LWQBvwaqpzsnp-Wj2-5suPl7fHh2VuS6FjDpbVa6sE16qhFjQXCvmCQ8WVACW01Zoz4Jw1bE0xKVXT2LVUquRSCSrm5PZoO_rha4chms4Fi20LPQ67YPRC01ILqhMpj6T1QwgeGzN614H_NoyaQ3Rma6bozCE6Q6VJ0aW9m-kCBAtt46G3Lvwtc15VSiZwTu6PHKZv9w69CdZhb7F2Hm009eD-ufQLN2eIDA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Wang, Yuan-Tsung</creator><creator>Adachi, Yoshitaka</creator><creator>Nakajima, Kiyomi</creator><creator>Sugimoto, Yoshimasa</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20100801</creationdate><title>Quantitative three-dimensional characterization of pearlite spheroidization</title><author>Wang, Yuan-Tsung ; Adachi, Yoshitaka ; Nakajima, Kiyomi ; Sugimoto, Yoshimasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-ac1dbc63276f0ca7236e282a9263a637c7721a221f1b0ea639ffcb5664256303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3-D tomography</topic><topic>Applied sciences</topic><topic>Cementite</topic><topic>Cementite lamella</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>Curvature</topic><topic>Exact sciences and technology</topic><topic>Hole</topic><topic>Lamella</topic><topic>Lamellar structure</topic><topic>Metals. Metallurgy</topic><topic>Pearlite</topic><topic>Ribbons</topic><topic>Spheroidizing</topic><topic>Surface energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuan-Tsung</creatorcontrib><creatorcontrib>Adachi, Yoshitaka</creatorcontrib><creatorcontrib>Nakajima, Kiyomi</creatorcontrib><creatorcontrib>Sugimoto, Yoshimasa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuan-Tsung</au><au>Adachi, Yoshitaka</au><au>Nakajima, Kiyomi</au><au>Sugimoto, Yoshimasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative three-dimensional characterization of pearlite spheroidization</atitle><jtitle>Acta materialia</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>58</volume><issue>14</issue><spage>4849</spage><epage>4858</epage><pages>4849-4858</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>We investigated the pearlite spheroidization of a 0.8 mass% C–Fe steel under 700 °C static annealing conditions using a combination of computer-aided three-dimensional (3-D) tomography and electron back-scattered diffraction. The holes present in naturally grown cementite lamellae cause shape instability and induce shape evolution of the lamellar structure during spheroidization. 3-D visualization demonstrated that the intrinsic holes play an important role in the initiation and development of pearlite spheroidization. The hole coalescence and expansion causes the break-up up of large cementite lamellae into several long narrow ribbons. Furthermore, the growth mechanism of inter-hole coalescence is related to the ratio of half the inter-hole distance on a cementite lamella to the thickness of that lamella. The driving force for hole growth is either the difference in surface energy or the curvature between the hole edges and the adjacent flat surface of the lamella. The morphologies of cementite ribbons depend on the hole expansion position on cementite lamella, and can change their shape to cylinders or small spheres by Rayleigh’s perturbation process after prolonged spheroidization.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2010.05.023</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2010-08, Vol.58 (14), p.4849-4858
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_787047307
source Elsevier ScienceDirect Journals Complete
subjects 3-D tomography
Applied sciences
Cementite
Cementite lamella
Coalescence
Coalescing
Curvature
Exact sciences and technology
Hole
Lamella
Lamellar structure
Metals. Metallurgy
Pearlite
Ribbons
Spheroidizing
Surface energy
title Quantitative three-dimensional characterization of pearlite spheroidization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20three-dimensional%20characterization%20of%20pearlite%20spheroidization&rft.jtitle=Acta%20materialia&rft.au=Wang,%20Yuan-Tsung&rft.date=2010-08-01&rft.volume=58&rft.issue=14&rft.spage=4849&rft.epage=4858&rft.pages=4849-4858&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2010.05.023&rft_dat=%3Cproquest_cross%3E787047307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787047307&rft_id=info:pmid/&rft_els_id=S1359645410002983&rfr_iscdi=true