Singlet and triplet potential surfaces for the O2+C2H4 reaction

Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2010-11, Vol.133 (18), p.184306-184306
Hauptverfasser: Park, Kyoyeon, West, Aaron, Raheja, Erica, Sellner, Bernhard, Lischka, Hans, Windus, Theresa L, Hase, William L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184306
container_issue 18
container_start_page 184306
container_title The Journal of chemical physics
container_volume 133
creator Park, Kyoyeon
West, Aaron
Raheja, Erica
Sellner, Bernhard
Lischka, Hans
Windus, Theresa L
Hase, William L
description Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.
doi_str_mv 10.1063/1.3490480
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787040236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787040236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2300-f4632d4b043bde81e87cab586d5bf95b1c711a76476a67c52cb2d58cd0d1248f3</originalsourceid><addsrcrecordid>eNo9kLtOwzAYRi0EoqUw8AIoG0Io5fcltjMhVAFFqtQBmC1fIShNgu0MvD2tWpi-bzg6w0HoEsMcA6d3eE5ZDUzCEZpikHUpeA3HaApAcFlz4BN0ltIXAGBB2CmaEAyCEkKm6P616T5anwvduSLHZtj9oc--y41uizTGoK1PRehjkT99sSa3C7JkRfTa5qbvztFJ0G3yF4edofenx7fFslytn18WD6vSEgpQBsYpccwAo8Z5ib0UVptKcleZUFcGW4GxFpwJrrmwFbGGuEpaBw4TJgOdoeu9d4j99-hTVpsmWd-2uvP9mJSQAhgQyrfkzZ60sU8p-qCG2Gx0_FEY1C6XwuqQa8teHayj2Xj3T_71ob-IDGJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787040236</pqid></control><display><type>article</type><title>Singlet and triplet potential surfaces for the O2+C2H4 reaction</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Park, Kyoyeon ; West, Aaron ; Raheja, Erica ; Sellner, Bernhard ; Lischka, Hans ; Windus, Theresa L ; Hase, William L</creator><creatorcontrib>Park, Kyoyeon ; West, Aaron ; Raheja, Erica ; Sellner, Bernhard ; Lischka, Hans ; Windus, Theresa L ; Hase, William L</creatorcontrib><description>Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3490480</identifier><identifier>PMID: 21073222</identifier><language>eng</language><publisher>United States</publisher><subject>Ethane - chemistry ; Heterocyclic Compounds - chemical synthesis ; Heterocyclic Compounds - chemistry ; Molecular Structure ; Oxygen - chemistry ; Peroxides - chemical synthesis ; Peroxides - chemistry ; Quantum Theory ; Stereoisomerism ; Surface Properties ; Vibration</subject><ispartof>The Journal of chemical physics, 2010-11, Vol.133 (18), p.184306-184306</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2300-f4632d4b043bde81e87cab586d5bf95b1c711a76476a67c52cb2d58cd0d1248f3</citedby><cites>FETCH-LOGICAL-c2300-f4632d4b043bde81e87cab586d5bf95b1c711a76476a67c52cb2d58cd0d1248f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21073222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kyoyeon</creatorcontrib><creatorcontrib>West, Aaron</creatorcontrib><creatorcontrib>Raheja, Erica</creatorcontrib><creatorcontrib>Sellner, Bernhard</creatorcontrib><creatorcontrib>Lischka, Hans</creatorcontrib><creatorcontrib>Windus, Theresa L</creatorcontrib><creatorcontrib>Hase, William L</creatorcontrib><title>Singlet and triplet potential surfaces for the O2+C2H4 reaction</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.</description><subject>Ethane - chemistry</subject><subject>Heterocyclic Compounds - chemical synthesis</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Molecular Structure</subject><subject>Oxygen - chemistry</subject><subject>Peroxides - chemical synthesis</subject><subject>Peroxides - chemistry</subject><subject>Quantum Theory</subject><subject>Stereoisomerism</subject><subject>Surface Properties</subject><subject>Vibration</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kLtOwzAYRi0EoqUw8AIoG0Io5fcltjMhVAFFqtQBmC1fIShNgu0MvD2tWpi-bzg6w0HoEsMcA6d3eE5ZDUzCEZpikHUpeA3HaApAcFlz4BN0ltIXAGBB2CmaEAyCEkKm6P616T5anwvduSLHZtj9oc--y41uizTGoK1PRehjkT99sSa3C7JkRfTa5qbvztFJ0G3yF4edofenx7fFslytn18WD6vSEgpQBsYpccwAo8Z5ib0UVptKcleZUFcGW4GxFpwJrrmwFbGGuEpaBw4TJgOdoeu9d4j99-hTVpsmWd-2uvP9mJSQAhgQyrfkzZ60sU8p-qCG2Gx0_FEY1C6XwuqQa8teHayj2Xj3T_71ob-IDGJf</recordid><startdate>20101114</startdate><enddate>20101114</enddate><creator>Park, Kyoyeon</creator><creator>West, Aaron</creator><creator>Raheja, Erica</creator><creator>Sellner, Bernhard</creator><creator>Lischka, Hans</creator><creator>Windus, Theresa L</creator><creator>Hase, William L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101114</creationdate><title>Singlet and triplet potential surfaces for the O2+C2H4 reaction</title><author>Park, Kyoyeon ; West, Aaron ; Raheja, Erica ; Sellner, Bernhard ; Lischka, Hans ; Windus, Theresa L ; Hase, William L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2300-f4632d4b043bde81e87cab586d5bf95b1c711a76476a67c52cb2d58cd0d1248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ethane - chemistry</topic><topic>Heterocyclic Compounds - chemical synthesis</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Molecular Structure</topic><topic>Oxygen - chemistry</topic><topic>Peroxides - chemical synthesis</topic><topic>Peroxides - chemistry</topic><topic>Quantum Theory</topic><topic>Stereoisomerism</topic><topic>Surface Properties</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kyoyeon</creatorcontrib><creatorcontrib>West, Aaron</creatorcontrib><creatorcontrib>Raheja, Erica</creatorcontrib><creatorcontrib>Sellner, Bernhard</creatorcontrib><creatorcontrib>Lischka, Hans</creatorcontrib><creatorcontrib>Windus, Theresa L</creatorcontrib><creatorcontrib>Hase, William L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kyoyeon</au><au>West, Aaron</au><au>Raheja, Erica</au><au>Sellner, Bernhard</au><au>Lischka, Hans</au><au>Windus, Theresa L</au><au>Hase, William L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singlet and triplet potential surfaces for the O2+C2H4 reaction</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2010-11-14</date><risdate>2010</risdate><volume>133</volume><issue>18</issue><spage>184306</spage><epage>184306</epage><pages>184306-184306</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.</abstract><cop>United States</cop><pmid>21073222</pmid><doi>10.1063/1.3490480</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2010-11, Vol.133 (18), p.184306-184306
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_787040236
source MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Ethane - chemistry
Heterocyclic Compounds - chemical synthesis
Heterocyclic Compounds - chemistry
Molecular Structure
Oxygen - chemistry
Peroxides - chemical synthesis
Peroxides - chemistry
Quantum Theory
Stereoisomerism
Surface Properties
Vibration
title Singlet and triplet potential surfaces for the O2+C2H4 reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singlet%20and%20triplet%20potential%20surfaces%20for%20the%20O2+C2H4%20reaction&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Park,%20Kyoyeon&rft.date=2010-11-14&rft.volume=133&rft.issue=18&rft.spage=184306&rft.epage=184306&rft.pages=184306-184306&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.3490480&rft_dat=%3Cproquest_cross%3E787040236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787040236&rft_id=info:pmid/21073222&rfr_iscdi=true