Singlet and triplet potential surfaces for the O2+C2H4 reaction
Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-or...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2010-11, Vol.133 (18), p.184306-184306 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184306 |
---|---|
container_issue | 18 |
container_start_page | 184306 |
container_title | The Journal of chemical physics |
container_volume | 133 |
creator | Park, Kyoyeon West, Aaron Raheja, Erica Sellner, Bernhard Lischka, Hans Windus, Theresa L Hase, William L |
description | Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing. |
doi_str_mv | 10.1063/1.3490480 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_787040236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>787040236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2300-f4632d4b043bde81e87cab586d5bf95b1c711a76476a67c52cb2d58cd0d1248f3</originalsourceid><addsrcrecordid>eNo9kLtOwzAYRi0EoqUw8AIoG0Io5fcltjMhVAFFqtQBmC1fIShNgu0MvD2tWpi-bzg6w0HoEsMcA6d3eE5ZDUzCEZpikHUpeA3HaApAcFlz4BN0ltIXAGBB2CmaEAyCEkKm6P616T5anwvduSLHZtj9oc--y41uizTGoK1PRehjkT99sSa3C7JkRfTa5qbvztFJ0G3yF4edofenx7fFslytn18WD6vSEgpQBsYpccwAo8Z5ib0UVptKcleZUFcGW4GxFpwJrrmwFbGGuEpaBw4TJgOdoeu9d4j99-hTVpsmWd-2uvP9mJSQAhgQyrfkzZ60sU8p-qCG2Gx0_FEY1C6XwuqQa8teHayj2Xj3T_71ob-IDGJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787040236</pqid></control><display><type>article</type><title>Singlet and triplet potential surfaces for the O2+C2H4 reaction</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Park, Kyoyeon ; West, Aaron ; Raheja, Erica ; Sellner, Bernhard ; Lischka, Hans ; Windus, Theresa L ; Hase, William L</creator><creatorcontrib>Park, Kyoyeon ; West, Aaron ; Raheja, Erica ; Sellner, Bernhard ; Lischka, Hans ; Windus, Theresa L ; Hase, William L</creatorcontrib><description>Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3490480</identifier><identifier>PMID: 21073222</identifier><language>eng</language><publisher>United States</publisher><subject>Ethane - chemistry ; Heterocyclic Compounds - chemical synthesis ; Heterocyclic Compounds - chemistry ; Molecular Structure ; Oxygen - chemistry ; Peroxides - chemical synthesis ; Peroxides - chemistry ; Quantum Theory ; Stereoisomerism ; Surface Properties ; Vibration</subject><ispartof>The Journal of chemical physics, 2010-11, Vol.133 (18), p.184306-184306</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2300-f4632d4b043bde81e87cab586d5bf95b1c711a76476a67c52cb2d58cd0d1248f3</citedby><cites>FETCH-LOGICAL-c2300-f4632d4b043bde81e87cab586d5bf95b1c711a76476a67c52cb2d58cd0d1248f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21073222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kyoyeon</creatorcontrib><creatorcontrib>West, Aaron</creatorcontrib><creatorcontrib>Raheja, Erica</creatorcontrib><creatorcontrib>Sellner, Bernhard</creatorcontrib><creatorcontrib>Lischka, Hans</creatorcontrib><creatorcontrib>Windus, Theresa L</creatorcontrib><creatorcontrib>Hase, William L</creatorcontrib><title>Singlet and triplet potential surfaces for the O2+C2H4 reaction</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.</description><subject>Ethane - chemistry</subject><subject>Heterocyclic Compounds - chemical synthesis</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Molecular Structure</subject><subject>Oxygen - chemistry</subject><subject>Peroxides - chemical synthesis</subject><subject>Peroxides - chemistry</subject><subject>Quantum Theory</subject><subject>Stereoisomerism</subject><subject>Surface Properties</subject><subject>Vibration</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kLtOwzAYRi0EoqUw8AIoG0Io5fcltjMhVAFFqtQBmC1fIShNgu0MvD2tWpi-bzg6w0HoEsMcA6d3eE5ZDUzCEZpikHUpeA3HaApAcFlz4BN0ltIXAGBB2CmaEAyCEkKm6P616T5anwvduSLHZtj9oc--y41uizTGoK1PRehjkT99sSa3C7JkRfTa5qbvztFJ0G3yF4edofenx7fFslytn18WD6vSEgpQBsYpccwAo8Z5ib0UVptKcleZUFcGW4GxFpwJrrmwFbGGuEpaBw4TJgOdoeu9d4j99-hTVpsmWd-2uvP9mJSQAhgQyrfkzZ60sU8p-qCG2Gx0_FEY1C6XwuqQa8teHayj2Xj3T_71ob-IDGJf</recordid><startdate>20101114</startdate><enddate>20101114</enddate><creator>Park, Kyoyeon</creator><creator>West, Aaron</creator><creator>Raheja, Erica</creator><creator>Sellner, Bernhard</creator><creator>Lischka, Hans</creator><creator>Windus, Theresa L</creator><creator>Hase, William L</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101114</creationdate><title>Singlet and triplet potential surfaces for the O2+C2H4 reaction</title><author>Park, Kyoyeon ; West, Aaron ; Raheja, Erica ; Sellner, Bernhard ; Lischka, Hans ; Windus, Theresa L ; Hase, William L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2300-f4632d4b043bde81e87cab586d5bf95b1c711a76476a67c52cb2d58cd0d1248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ethane - chemistry</topic><topic>Heterocyclic Compounds - chemical synthesis</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Molecular Structure</topic><topic>Oxygen - chemistry</topic><topic>Peroxides - chemical synthesis</topic><topic>Peroxides - chemistry</topic><topic>Quantum Theory</topic><topic>Stereoisomerism</topic><topic>Surface Properties</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kyoyeon</creatorcontrib><creatorcontrib>West, Aaron</creatorcontrib><creatorcontrib>Raheja, Erica</creatorcontrib><creatorcontrib>Sellner, Bernhard</creatorcontrib><creatorcontrib>Lischka, Hans</creatorcontrib><creatorcontrib>Windus, Theresa L</creatorcontrib><creatorcontrib>Hase, William L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kyoyeon</au><au>West, Aaron</au><au>Raheja, Erica</au><au>Sellner, Bernhard</au><au>Lischka, Hans</au><au>Windus, Theresa L</au><au>Hase, William L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singlet and triplet potential surfaces for the O2+C2H4 reaction</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2010-11-14</date><risdate>2010</risdate><volume>133</volume><issue>18</issue><spage>184306</spage><epage>184306</epage><pages>184306-184306</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Electronic structure calculations at the CASSCF and UB3LYP levels of theory with the aug-cc-pVDZ basis set were used to characterize structures, vibrational frequencies, and energies for stationary points on the ground state triplet and singlet O(2)+C(2)H(4) potential energy surfaces (PESs). Spin-orbit couplings between the PESs were calculated using state averaged CASSCF wave functions. More accurate energies were obtained for the CASSCF structures with the MRMP2/aug-cc-pVDZ method. An important and necessary aspect of the calculations was the need to use different CASSCF active spaces for the different reaction paths on the investigated PESs. The CASSCF calculations focused on O(2)+C(2)H(4) addition to form the C(2)H(4)O(2) biradical on the triplet and singlet surfaces, and isomerization reaction paths ensuing from this biradical. The triplet and singlet C(2)H(4)O(2) biradicals are very similar in structure, primarily differing in their C-C-O-O dihedral angles. The MRMP2 values for the O(2)+C(2)H(4)→C(2)H(4)O(2) barrier to form the biradical are 33.8 and 6.1 kcal/mol, respectively, for the triplet and singlet surfaces. On the singlet surface, C(2)H(4)O(2) isomerizes to dioxetane and ethane-peroxide with MRMP2 barriers of 7.8 and 21.3 kcal/mol. A more exhaustive search of reaction paths was made for the singlet surface using the UB3LYP/aug-cc-pVDZ theory. The triplet and singlet surfaces cross between the structures for the O(2)+C(2)H(4) addition transition states and the biradical intermediates. Trapping in the triplet biradical intermediate, following (3)O(2)+C(2)H(4) addition, is expected to enhance triplet→singlet intersystem crossing.</abstract><cop>United States</cop><pmid>21073222</pmid><doi>10.1063/1.3490480</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2010-11, Vol.133 (18), p.184306-184306 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_787040236 |
source | MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Ethane - chemistry Heterocyclic Compounds - chemical synthesis Heterocyclic Compounds - chemistry Molecular Structure Oxygen - chemistry Peroxides - chemical synthesis Peroxides - chemistry Quantum Theory Stereoisomerism Surface Properties Vibration |
title | Singlet and triplet potential surfaces for the O2+C2H4 reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singlet%20and%20triplet%20potential%20surfaces%20for%20the%20O2+C2H4%20reaction&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Park,%20Kyoyeon&rft.date=2010-11-14&rft.volume=133&rft.issue=18&rft.spage=184306&rft.epage=184306&rft.pages=184306-184306&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.3490480&rft_dat=%3Cproquest_cross%3E787040236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787040236&rft_id=info:pmid/21073222&rfr_iscdi=true |