Protective metabolic mechanisms during liver ischemia: transferable lessons from long-diving animals
During periods of O2 lack in liver of seals, mitochondrial respiration and adenosine triphosphate (ATP) synthesis are necessarily arrested. During such electron transfer system (ETS) arrest, the mitochondria are suspended in functionally protected states; upon resupplying O2 and adenosine diphosphat...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 1988-11, Vol.84 (1), p.77-85 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Molecular and cellular biochemistry |
container_volume | 84 |
creator | Hochachka, P W Castellini, J M Hill, R D Schneider, R C Bengtson, J L Hill, S E Liggins, G C Zapol, W M |
description | During periods of O2 lack in liver of seals, mitochondrial respiration and adenosine triphosphate (ATP) synthesis are necessarily arrested. During such electron transfer system (ETS) arrest, the mitochondria are suspended in functionally protected states; upon resupplying O2 and adenosine diphosphate (ADP), coupled respiration and ATP synthesis can resume immediately, implying that mitochondrial electrochemical potentials required for ATP synthesis are preserved during ischemia. A similar situation occurs in the rest of the cell since ion gradients also seem to be maintained across the plasma membrane; with ion-specific channels seemingly relatively inactive, ion fluxes (e.g., K+ efflux and Ca++ influx) can be reduced, consequently reducing ATP expenditure for ion pumping. The need for making up energy shortfalls caused by ETS arrest is thus minimized, which is why anaerobic glycolysis can be held in low activity states (anaerobic ATP turnover rates being reduced in ischemia to less than 1/100 of typical normoxic rates in mammalian liver and to about 1/10 the rates expected during liver hypoperfusion in prolonged diving). As in many ectotherms, an interesting parallelism (channel arrest coupled with a proportionate metabolic arrest at the level of both glycolysis and the ETS) appears as the dominant hypoxia defense strategy in a hypoxia-tolerant mammalian organ. |
doi_str_mv | 10.1007/BF00235195 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78699494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78699494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-b9c74d61e558a2beea60bfad1b340e0a5f6eb59d36a9c24ce2617780109eed7a3</originalsourceid><addsrcrecordid>eNpFkL1PwzAUxC0EKqWwsCN5YkAK-COJYzaoKCBVggHmyB8vbZATFzupxH-Pq1Yw3Rt-73R3CF1ScksJEXePC0IYL6gsjtCUFoJnuaTyGE0JJySrqBCn6CzGL0ISTukETTjjlFExRfY9-AHM0G4BdzAo7V1r0mXWqm9jF7EdQ9uvsEtAwG00a-hadY-HoPrYQFDaAXYQo-8jboLvsPP9KrPtdveVPDrl4jk6aZLAxUFn6HPx9DF_yZZvz6_zh2VmWMWGTEsjcltSKIpKMQ2gSqIbZanmOQGiiqYEXUjLSyUNyw2wMlWrUikJYIXiM3S9990E_z1CHOouJQbnVA9-jLWoSilzmSfwZg-a4GMM0NSbkJKGn5qSejdp_T9pgq8OrqPuwP6hhw35LwkJcu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78699494</pqid></control><display><type>article</type><title>Protective metabolic mechanisms during liver ischemia: transferable lessons from long-diving animals</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Hochachka, P W ; Castellini, J M ; Hill, R D ; Schneider, R C ; Bengtson, J L ; Hill, S E ; Liggins, G C ; Zapol, W M</creator><creatorcontrib>Hochachka, P W ; Castellini, J M ; Hill, R D ; Schneider, R C ; Bengtson, J L ; Hill, S E ; Liggins, G C ; Zapol, W M</creatorcontrib><description>During periods of O2 lack in liver of seals, mitochondrial respiration and adenosine triphosphate (ATP) synthesis are necessarily arrested. During such electron transfer system (ETS) arrest, the mitochondria are suspended in functionally protected states; upon resupplying O2 and adenosine diphosphate (ADP), coupled respiration and ATP synthesis can resume immediately, implying that mitochondrial electrochemical potentials required for ATP synthesis are preserved during ischemia. A similar situation occurs in the rest of the cell since ion gradients also seem to be maintained across the plasma membrane; with ion-specific channels seemingly relatively inactive, ion fluxes (e.g., K+ efflux and Ca++ influx) can be reduced, consequently reducing ATP expenditure for ion pumping. The need for making up energy shortfalls caused by ETS arrest is thus minimized, which is why anaerobic glycolysis can be held in low activity states (anaerobic ATP turnover rates being reduced in ischemia to less than 1/100 of typical normoxic rates in mammalian liver and to about 1/10 the rates expected during liver hypoperfusion in prolonged diving). As in many ectotherms, an interesting parallelism (channel arrest coupled with a proportionate metabolic arrest at the level of both glycolysis and the ETS) appears as the dominant hypoxia defense strategy in a hypoxia-tolerant mammalian organ.</description><identifier>ISSN: 0300-8177</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/BF00235195</identifier><identifier>PMID: 3231217</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Animals ; Caniformia - metabolism ; Diving - adverse effects ; Glycolysis ; Hypoxia - metabolism ; Ischemia - metabolism ; Liver - blood supply ; Mitochondria, Liver - metabolism ; Oxygen Consumption ; Potassium - metabolism ; Seals, Earless - metabolism ; Space life sciences</subject><ispartof>Molecular and cellular biochemistry, 1988-11, Vol.84 (1), p.77-85</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-b9c74d61e558a2beea60bfad1b340e0a5f6eb59d36a9c24ce2617780109eed7a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3231217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hochachka, P W</creatorcontrib><creatorcontrib>Castellini, J M</creatorcontrib><creatorcontrib>Hill, R D</creatorcontrib><creatorcontrib>Schneider, R C</creatorcontrib><creatorcontrib>Bengtson, J L</creatorcontrib><creatorcontrib>Hill, S E</creatorcontrib><creatorcontrib>Liggins, G C</creatorcontrib><creatorcontrib>Zapol, W M</creatorcontrib><title>Protective metabolic mechanisms during liver ischemia: transferable lessons from long-diving animals</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><description>During periods of O2 lack in liver of seals, mitochondrial respiration and adenosine triphosphate (ATP) synthesis are necessarily arrested. During such electron transfer system (ETS) arrest, the mitochondria are suspended in functionally protected states; upon resupplying O2 and adenosine diphosphate (ADP), coupled respiration and ATP synthesis can resume immediately, implying that mitochondrial electrochemical potentials required for ATP synthesis are preserved during ischemia. A similar situation occurs in the rest of the cell since ion gradients also seem to be maintained across the plasma membrane; with ion-specific channels seemingly relatively inactive, ion fluxes (e.g., K+ efflux and Ca++ influx) can be reduced, consequently reducing ATP expenditure for ion pumping. The need for making up energy shortfalls caused by ETS arrest is thus minimized, which is why anaerobic glycolysis can be held in low activity states (anaerobic ATP turnover rates being reduced in ischemia to less than 1/100 of typical normoxic rates in mammalian liver and to about 1/10 the rates expected during liver hypoperfusion in prolonged diving). As in many ectotherms, an interesting parallelism (channel arrest coupled with a proportionate metabolic arrest at the level of both glycolysis and the ETS) appears as the dominant hypoxia defense strategy in a hypoxia-tolerant mammalian organ.</description><subject>Animals</subject><subject>Caniformia - metabolism</subject><subject>Diving - adverse effects</subject><subject>Glycolysis</subject><subject>Hypoxia - metabolism</subject><subject>Ischemia - metabolism</subject><subject>Liver - blood supply</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Oxygen Consumption</subject><subject>Potassium - metabolism</subject><subject>Seals, Earless - metabolism</subject><subject>Space life sciences</subject><issn>0300-8177</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkL1PwzAUxC0EKqWwsCN5YkAK-COJYzaoKCBVggHmyB8vbZATFzupxH-Pq1Yw3Rt-73R3CF1ScksJEXePC0IYL6gsjtCUFoJnuaTyGE0JJySrqBCn6CzGL0ISTukETTjjlFExRfY9-AHM0G4BdzAo7V1r0mXWqm9jF7EdQ9uvsEtAwG00a-hadY-HoPrYQFDaAXYQo-8jboLvsPP9KrPtdveVPDrl4jk6aZLAxUFn6HPx9DF_yZZvz6_zh2VmWMWGTEsjcltSKIpKMQ2gSqIbZanmOQGiiqYEXUjLSyUNyw2wMlWrUikJYIXiM3S9990E_z1CHOouJQbnVA9-jLWoSilzmSfwZg-a4GMM0NSbkJKGn5qSejdp_T9pgq8OrqPuwP6hhw35LwkJcu4</recordid><startdate>198811</startdate><enddate>198811</enddate><creator>Hochachka, P W</creator><creator>Castellini, J M</creator><creator>Hill, R D</creator><creator>Schneider, R C</creator><creator>Bengtson, J L</creator><creator>Hill, S E</creator><creator>Liggins, G C</creator><creator>Zapol, W M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>198811</creationdate><title>Protective metabolic mechanisms during liver ischemia: transferable lessons from long-diving animals</title><author>Hochachka, P W ; Castellini, J M ; Hill, R D ; Schneider, R C ; Bengtson, J L ; Hill, S E ; Liggins, G C ; Zapol, W M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-b9c74d61e558a2beea60bfad1b340e0a5f6eb59d36a9c24ce2617780109eed7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Animals</topic><topic>Caniformia - metabolism</topic><topic>Diving - adverse effects</topic><topic>Glycolysis</topic><topic>Hypoxia - metabolism</topic><topic>Ischemia - metabolism</topic><topic>Liver - blood supply</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Oxygen Consumption</topic><topic>Potassium - metabolism</topic><topic>Seals, Earless - metabolism</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hochachka, P W</creatorcontrib><creatorcontrib>Castellini, J M</creatorcontrib><creatorcontrib>Hill, R D</creatorcontrib><creatorcontrib>Schneider, R C</creatorcontrib><creatorcontrib>Bengtson, J L</creatorcontrib><creatorcontrib>Hill, S E</creatorcontrib><creatorcontrib>Liggins, G C</creatorcontrib><creatorcontrib>Zapol, W M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hochachka, P W</au><au>Castellini, J M</au><au>Hill, R D</au><au>Schneider, R C</au><au>Bengtson, J L</au><au>Hill, S E</au><au>Liggins, G C</au><au>Zapol, W M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protective metabolic mechanisms during liver ischemia: transferable lessons from long-diving animals</atitle><jtitle>Molecular and cellular biochemistry</jtitle><addtitle>Mol Cell Biochem</addtitle><date>1988-11</date><risdate>1988</risdate><volume>84</volume><issue>1</issue><spage>77</spage><epage>85</epage><pages>77-85</pages><issn>0300-8177</issn><eissn>1573-4919</eissn><abstract>During periods of O2 lack in liver of seals, mitochondrial respiration and adenosine triphosphate (ATP) synthesis are necessarily arrested. During such electron transfer system (ETS) arrest, the mitochondria are suspended in functionally protected states; upon resupplying O2 and adenosine diphosphate (ADP), coupled respiration and ATP synthesis can resume immediately, implying that mitochondrial electrochemical potentials required for ATP synthesis are preserved during ischemia. A similar situation occurs in the rest of the cell since ion gradients also seem to be maintained across the plasma membrane; with ion-specific channels seemingly relatively inactive, ion fluxes (e.g., K+ efflux and Ca++ influx) can be reduced, consequently reducing ATP expenditure for ion pumping. The need for making up energy shortfalls caused by ETS arrest is thus minimized, which is why anaerobic glycolysis can be held in low activity states (anaerobic ATP turnover rates being reduced in ischemia to less than 1/100 of typical normoxic rates in mammalian liver and to about 1/10 the rates expected during liver hypoperfusion in prolonged diving). As in many ectotherms, an interesting parallelism (channel arrest coupled with a proportionate metabolic arrest at the level of both glycolysis and the ETS) appears as the dominant hypoxia defense strategy in a hypoxia-tolerant mammalian organ.</abstract><cop>Netherlands</cop><pmid>3231217</pmid><doi>10.1007/BF00235195</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-8177 |
ispartof | Molecular and cellular biochemistry, 1988-11, Vol.84 (1), p.77-85 |
issn | 0300-8177 1573-4919 |
language | eng |
recordid | cdi_proquest_miscellaneous_78699494 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Caniformia - metabolism Diving - adverse effects Glycolysis Hypoxia - metabolism Ischemia - metabolism Liver - blood supply Mitochondria, Liver - metabolism Oxygen Consumption Potassium - metabolism Seals, Earless - metabolism Space life sciences |
title | Protective metabolic mechanisms during liver ischemia: transferable lessons from long-diving animals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protective%20metabolic%20mechanisms%20during%20liver%20ischemia:%20transferable%20lessons%20from%20long-diving%20animals&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Hochachka,%20P%20W&rft.date=1988-11&rft.volume=84&rft.issue=1&rft.spage=77&rft.epage=85&rft.pages=77-85&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/BF00235195&rft_dat=%3Cproquest_cross%3E78699494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78699494&rft_id=info:pmid/3231217&rfr_iscdi=true |