Induced, endogenous and exogenous centrality
Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By...
Gespeichert in:
Veröffentlicht in: | Social networks 2010-10, Vol.32 (4), p.339-344 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 344 |
---|---|
container_issue | 4 |
container_start_page | 339 |
container_title | Social networks |
container_volume | 32 |
creator | Everett, Martin G. Borgatti, Stephen P. |
description | Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness. |
doi_str_mv | 10.1016/j.socnet.2010.06.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_786978372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873310000341</els_id><sourcerecordid>758123536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-948de77af71510ef7b2db7b84cd873bead2c313f843154dd562a6a49cb2544943</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_wEMv4sVd87VJ9iJI8aNQ8KLnkE1mJWWbrclW7L83ZatHPQ0zPDPz8iB0SXBJMBG3qzL1NsBQUpxHWJQY8yM0IUrWBSWEHKMJZlIVSjJ2is5SWmGMhSRqgm4WwW0tuJsZBNe_Q-i3aWaCm8HXT2chDNF0ftido5PWdAkuDnWK3h4fXufPxfLlaTG_XxaWczEUNVcOpDStJBXB0MqGukY2iluXEzRgHLWMsFZxRiruXCWoEYbXtqEV5zVnU3Q93t3E_mMLadBrnyx0nQmQE2mpRC0Vk_R_slKEsoqJTPKRtLFPKUKrN9GvTdxpgvXeol7p0aLeW9RY6Gwxr10dHphkTddGE6xPv7uU0VopsufuRg6yl08PUSfrIWSzPoIdtOv934--ASnHiMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758123536</pqid></control><display><type>article</type><title>Induced, endogenous and exogenous centrality</title><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Everett, Martin G. ; Borgatti, Stephen P.</creator><creatorcontrib>Everett, Martin G. ; Borgatti, Stephen P.</creatorcontrib><description>Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/j.socnet.2010.06.004</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actor-network theory ; Betweenness ; Centrality ; Centrality (actor-network theory) ; Closeness ; Degree ; History, theory and methodology ; Measurement ; Methodological Problems ; Methodology ; Network analysis ; Networks ; Sociology ; Structural analysis ; Validity ; Vitality measures</subject><ispartof>Social networks, 2010-10, Vol.32 (4), p.339-344</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-948de77af71510ef7b2db7b84cd873bead2c313f843154dd562a6a49cb2544943</citedby><cites>FETCH-LOGICAL-c446t-948de77af71510ef7b2db7b84cd873bead2c313f843154dd562a6a49cb2544943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378873310000341$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,33752,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23298814$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Everett, Martin G.</creatorcontrib><creatorcontrib>Borgatti, Stephen P.</creatorcontrib><title>Induced, endogenous and exogenous centrality</title><title>Social networks</title><description>Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.</description><subject>Actor-network theory</subject><subject>Betweenness</subject><subject>Centrality</subject><subject>Centrality (actor-network theory)</subject><subject>Closeness</subject><subject>Degree</subject><subject>History, theory and methodology</subject><subject>Measurement</subject><subject>Methodological Problems</subject><subject>Methodology</subject><subject>Network analysis</subject><subject>Networks</subject><subject>Sociology</subject><subject>Structural analysis</subject><subject>Validity</subject><subject>Vitality measures</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFkE1LAzEQhoMoWKv_wEMv4sVd87VJ9iJI8aNQ8KLnkE1mJWWbrclW7L83ZatHPQ0zPDPz8iB0SXBJMBG3qzL1NsBQUpxHWJQY8yM0IUrWBSWEHKMJZlIVSjJ2is5SWmGMhSRqgm4WwW0tuJsZBNe_Q-i3aWaCm8HXT2chDNF0ftido5PWdAkuDnWK3h4fXufPxfLlaTG_XxaWczEUNVcOpDStJBXB0MqGukY2iluXEzRgHLWMsFZxRiruXCWoEYbXtqEV5zVnU3Q93t3E_mMLadBrnyx0nQmQE2mpRC0Vk_R_slKEsoqJTPKRtLFPKUKrN9GvTdxpgvXeol7p0aLeW9RY6Gwxr10dHphkTddGE6xPv7uU0VopsufuRg6yl08PUSfrIWSzPoIdtOv934--ASnHiMY</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Everett, Martin G.</creator><creator>Borgatti, Stephen P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20101001</creationdate><title>Induced, endogenous and exogenous centrality</title><author>Everett, Martin G. ; Borgatti, Stephen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-948de77af71510ef7b2db7b84cd873bead2c313f843154dd562a6a49cb2544943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actor-network theory</topic><topic>Betweenness</topic><topic>Centrality</topic><topic>Centrality (actor-network theory)</topic><topic>Closeness</topic><topic>Degree</topic><topic>History, theory and methodology</topic><topic>Measurement</topic><topic>Methodological Problems</topic><topic>Methodology</topic><topic>Network analysis</topic><topic>Networks</topic><topic>Sociology</topic><topic>Structural analysis</topic><topic>Validity</topic><topic>Vitality measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Everett, Martin G.</creatorcontrib><creatorcontrib>Borgatti, Stephen P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Everett, Martin G.</au><au>Borgatti, Stephen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced, endogenous and exogenous centrality</atitle><jtitle>Social networks</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>32</volume><issue>4</issue><spage>339</spage><epage>344</epage><pages>339-344</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.socnet.2010.06.004</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-8733 |
ispartof | Social networks, 2010-10, Vol.32 (4), p.339-344 |
issn | 0378-8733 1879-2111 |
language | eng |
recordid | cdi_proquest_miscellaneous_786978372 |
source | Elsevier ScienceDirect Journals; Sociological Abstracts |
subjects | Actor-network theory Betweenness Centrality Centrality (actor-network theory) Closeness Degree History, theory and methodology Measurement Methodological Problems Methodology Network analysis Networks Sociology Structural analysis Validity Vitality measures |
title | Induced, endogenous and exogenous centrality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced,%20endogenous%20and%20exogenous%20centrality&rft.jtitle=Social%20networks&rft.au=Everett,%20Martin%20G.&rft.date=2010-10-01&rft.volume=32&rft.issue=4&rft.spage=339&rft.epage=344&rft.pages=339-344&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/j.socnet.2010.06.004&rft_dat=%3Cproquest_cross%3E758123536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758123536&rft_id=info:pmid/&rft_els_id=S0378873310000341&rfr_iscdi=true |