Induced, endogenous and exogenous centrality

Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social networks 2010-10, Vol.32 (4), p.339-344
Hauptverfasser: Everett, Martin G., Borgatti, Stephen P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 4
container_start_page 339
container_title Social networks
container_volume 32
creator Everett, Martin G.
Borgatti, Stephen P.
description Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.
doi_str_mv 10.1016/j.socnet.2010.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_786978372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378873310000341</els_id><sourcerecordid>758123536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-948de77af71510ef7b2db7b84cd873bead2c313f843154dd562a6a49cb2544943</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_wEMv4sVd87VJ9iJI8aNQ8KLnkE1mJWWbrclW7L83ZatHPQ0zPDPz8iB0SXBJMBG3qzL1NsBQUpxHWJQY8yM0IUrWBSWEHKMJZlIVSjJ2is5SWmGMhSRqgm4WwW0tuJsZBNe_Q-i3aWaCm8HXT2chDNF0ftido5PWdAkuDnWK3h4fXufPxfLlaTG_XxaWczEUNVcOpDStJBXB0MqGukY2iluXEzRgHLWMsFZxRiruXCWoEYbXtqEV5zVnU3Q93t3E_mMLadBrnyx0nQmQE2mpRC0Vk_R_slKEsoqJTPKRtLFPKUKrN9GvTdxpgvXeol7p0aLeW9RY6Gwxr10dHphkTddGE6xPv7uU0VopsufuRg6yl08PUSfrIWSzPoIdtOv934--ASnHiMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758123536</pqid></control><display><type>article</type><title>Induced, endogenous and exogenous centrality</title><source>Elsevier ScienceDirect Journals</source><source>Sociological Abstracts</source><creator>Everett, Martin G. ; Borgatti, Stephen P.</creator><creatorcontrib>Everett, Martin G. ; Borgatti, Stephen P.</creatorcontrib><description>Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.</description><identifier>ISSN: 0378-8733</identifier><identifier>EISSN: 1879-2111</identifier><identifier>DOI: 10.1016/j.socnet.2010.06.004</identifier><identifier>CODEN: SONED4</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actor-network theory ; Betweenness ; Centrality ; Centrality (actor-network theory) ; Closeness ; Degree ; History, theory and methodology ; Measurement ; Methodological Problems ; Methodology ; Network analysis ; Networks ; Sociology ; Structural analysis ; Validity ; Vitality measures</subject><ispartof>Social networks, 2010-10, Vol.32 (4), p.339-344</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-948de77af71510ef7b2db7b84cd873bead2c313f843154dd562a6a49cb2544943</citedby><cites>FETCH-LOGICAL-c446t-948de77af71510ef7b2db7b84cd873bead2c313f843154dd562a6a49cb2544943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378873310000341$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,33752,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23298814$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Everett, Martin G.</creatorcontrib><creatorcontrib>Borgatti, Stephen P.</creatorcontrib><title>Induced, endogenous and exogenous centrality</title><title>Social networks</title><description>Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.</description><subject>Actor-network theory</subject><subject>Betweenness</subject><subject>Centrality</subject><subject>Centrality (actor-network theory)</subject><subject>Closeness</subject><subject>Degree</subject><subject>History, theory and methodology</subject><subject>Measurement</subject><subject>Methodological Problems</subject><subject>Methodology</subject><subject>Network analysis</subject><subject>Networks</subject><subject>Sociology</subject><subject>Structural analysis</subject><subject>Validity</subject><subject>Vitality measures</subject><issn>0378-8733</issn><issn>1879-2111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFkE1LAzEQhoMoWKv_wEMv4sVd87VJ9iJI8aNQ8KLnkE1mJWWbrclW7L83ZatHPQ0zPDPz8iB0SXBJMBG3qzL1NsBQUpxHWJQY8yM0IUrWBSWEHKMJZlIVSjJ2is5SWmGMhSRqgm4WwW0tuJsZBNe_Q-i3aWaCm8HXT2chDNF0ftido5PWdAkuDnWK3h4fXufPxfLlaTG_XxaWczEUNVcOpDStJBXB0MqGukY2iluXEzRgHLWMsFZxRiruXCWoEYbXtqEV5zVnU3Q93t3E_mMLadBrnyx0nQmQE2mpRC0Vk_R_slKEsoqJTPKRtLFPKUKrN9GvTdxpgvXeol7p0aLeW9RY6Gwxr10dHphkTddGE6xPv7uU0VopsufuRg6yl08PUSfrIWSzPoIdtOv934--ASnHiMY</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Everett, Martin G.</creator><creator>Borgatti, Stephen P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20101001</creationdate><title>Induced, endogenous and exogenous centrality</title><author>Everett, Martin G. ; Borgatti, Stephen P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-948de77af71510ef7b2db7b84cd873bead2c313f843154dd562a6a49cb2544943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Actor-network theory</topic><topic>Betweenness</topic><topic>Centrality</topic><topic>Centrality (actor-network theory)</topic><topic>Closeness</topic><topic>Degree</topic><topic>History, theory and methodology</topic><topic>Measurement</topic><topic>Methodological Problems</topic><topic>Methodology</topic><topic>Network analysis</topic><topic>Networks</topic><topic>Sociology</topic><topic>Structural analysis</topic><topic>Validity</topic><topic>Vitality measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Everett, Martin G.</creatorcontrib><creatorcontrib>Borgatti, Stephen P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Social networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Everett, Martin G.</au><au>Borgatti, Stephen P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced, endogenous and exogenous centrality</atitle><jtitle>Social networks</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>32</volume><issue>4</issue><spage>339</spage><epage>344</epage><pages>339-344</pages><issn>0378-8733</issn><eissn>1879-2111</eissn><coden>SONED4</coden><abstract>Centrality measures are based upon the structural position an actor has within the network. Induced centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive vertex level measures by deleting individual nodes or edges and examining the overall change. By taking the sum of standard centrality measures as the graph invariant we can obtain measures which examine how much centrality an individual node contributes to the centrality of the other nodes in the network, we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.socnet.2010.06.004</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-8733
ispartof Social networks, 2010-10, Vol.32 (4), p.339-344
issn 0378-8733
1879-2111
language eng
recordid cdi_proquest_miscellaneous_786978372
source Elsevier ScienceDirect Journals; Sociological Abstracts
subjects Actor-network theory
Betweenness
Centrality
Centrality (actor-network theory)
Closeness
Degree
History, theory and methodology
Measurement
Methodological Problems
Methodology
Network analysis
Networks
Sociology
Structural analysis
Validity
Vitality measures
title Induced, endogenous and exogenous centrality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced,%20endogenous%20and%20exogenous%20centrality&rft.jtitle=Social%20networks&rft.au=Everett,%20Martin%20G.&rft.date=2010-10-01&rft.volume=32&rft.issue=4&rft.spage=339&rft.epage=344&rft.pages=339-344&rft.issn=0378-8733&rft.eissn=1879-2111&rft.coden=SONED4&rft_id=info:doi/10.1016/j.socnet.2010.06.004&rft_dat=%3Cproquest_cross%3E758123536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758123536&rft_id=info:pmid/&rft_els_id=S0378873310000341&rfr_iscdi=true