On the existence of undominated elements of acyclic relations

We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical social sciences 2010-11, Vol.60 (3), p.217-221
Hauptverfasser: Salonen, Hannu, Vartiainen, Hannu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 3
container_start_page 217
container_title Mathematical social sciences
container_volume 60
creator Salonen, Hannu
Vartiainen, Hannu
description We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given.
doi_str_mv 10.1016/j.mathsocsci.2010.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_786970605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165489610000673</els_id><sourcerecordid>786970605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-669bee3be7440630f9f88e70b82e92c0e523b8aef3d6de7617f668a37968ac093</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwH3LjlLCOWz8OHKDiqUq9wNlynY3qKo9iuxX99zgEwZHDrqXRzKz1EZJRKChQfrMtWhM3obfBuqKEJIMoANgJmVApVM4oladkkqzzfCYVPycXIWwBQCTzhNyuuixuMMNPFyJ2FrO-zvZd1beuMxGrDBtssYth0I092sbZzGNjouu7cEnOatMEvPp5p-T98eFt8ZwvV08vi7tlbpmaxZxztUZkaxSzGXAGtaqlRAFrWaIqLeC8ZGtpsGYVr1BwKmrOpWFCpW1BsSm5Hnt3vv_YY4i6dcFi05gO-33QQnIlgMM8OeXotL4PwWOtd961xh81BT0A01v9B0wPwDQInYCl6OsY9bhD-5tDxBRIfn3QzHBI65jmO8mMS8PS7AaJCl2WVG9im8ruxzJMWA4OvU7nBr6V82ijrnr3_4--AN39ko0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>786970605</pqid></control><display><type>article</type><title>On the existence of undominated elements of acyclic relations</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Salonen, Hannu ; Vartiainen, Hannu</creator><creatorcontrib>Salonen, Hannu ; Vartiainen, Hannu</creatorcontrib><description>We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/j.mathsocsci.2010.07.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acyclic relations ; Acyclic relations Utility function Maximal elements ; Domination ; Maximal elements ; Spatial analysis ; Topology ; Utility function ; Utility functions</subject><ispartof>Mathematical social sciences, 2010-11, Vol.60 (3), p.217-221</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-669bee3be7440630f9f88e70b82e92c0e523b8aef3d6de7617f668a37968ac093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165489610000673$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeematsoc/v_3a60_3ay_3a2010_3ai_3a3_3ap_3a217-221.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Salonen, Hannu</creatorcontrib><creatorcontrib>Vartiainen, Hannu</creatorcontrib><title>On the existence of undominated elements of acyclic relations</title><title>Mathematical social sciences</title><description>We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given.</description><subject>Acyclic relations</subject><subject>Acyclic relations Utility function Maximal elements</subject><subject>Domination</subject><subject>Maximal elements</subject><subject>Spatial analysis</subject><subject>Topology</subject><subject>Utility function</subject><subject>Utility functions</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtPwzAQhC0EEqXwH3LjlLCOWz8OHKDiqUq9wNlynY3qKo9iuxX99zgEwZHDrqXRzKz1EZJRKChQfrMtWhM3obfBuqKEJIMoANgJmVApVM4oladkkqzzfCYVPycXIWwBQCTzhNyuuixuMMNPFyJ2FrO-zvZd1beuMxGrDBtssYth0I092sbZzGNjouu7cEnOatMEvPp5p-T98eFt8ZwvV08vi7tlbpmaxZxztUZkaxSzGXAGtaqlRAFrWaIqLeC8ZGtpsGYVr1BwKmrOpWFCpW1BsSm5Hnt3vv_YY4i6dcFi05gO-33QQnIlgMM8OeXotL4PwWOtd961xh81BT0A01v9B0wPwDQInYCl6OsY9bhD-5tDxBRIfn3QzHBI65jmO8mMS8PS7AaJCl2WVG9im8ruxzJMWA4OvU7nBr6V82ijrnr3_4--AN39ko0</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Salonen, Hannu</creator><creator>Vartiainen, Hannu</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20101101</creationdate><title>On the existence of undominated elements of acyclic relations</title><author>Salonen, Hannu ; Vartiainen, Hannu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-669bee3be7440630f9f88e70b82e92c0e523b8aef3d6de7617f668a37968ac093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acyclic relations</topic><topic>Acyclic relations Utility function Maximal elements</topic><topic>Domination</topic><topic>Maximal elements</topic><topic>Spatial analysis</topic><topic>Topology</topic><topic>Utility function</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salonen, Hannu</creatorcontrib><creatorcontrib>Vartiainen, Hannu</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salonen, Hannu</au><au>Vartiainen, Hannu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the existence of undominated elements of acyclic relations</atitle><jtitle>Mathematical social sciences</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>60</volume><issue>3</issue><spage>217</spage><epage>221</epage><pages>217-221</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><abstract>We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mathsocsci.2010.07.003</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-4896
ispartof Mathematical social sciences, 2010-11, Vol.60 (3), p.217-221
issn 0165-4896
1879-3118
language eng
recordid cdi_proquest_miscellaneous_786970605
source RePEc; Elsevier ScienceDirect Journals
subjects Acyclic relations
Acyclic relations Utility function Maximal elements
Domination
Maximal elements
Spatial analysis
Topology
Utility function
Utility functions
title On the existence of undominated elements of acyclic relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20existence%20of%20undominated%20elements%20of%20acyclic%20relations&rft.jtitle=Mathematical%20social%20sciences&rft.au=Salonen,%20Hannu&rft.date=2010-11-01&rft.volume=60&rft.issue=3&rft.spage=217&rft.epage=221&rft.pages=217-221&rft.issn=0165-4896&rft.eissn=1879-3118&rft_id=info:doi/10.1016/j.mathsocsci.2010.07.003&rft_dat=%3Cproquest_cross%3E786970605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=786970605&rft_id=info:pmid/&rft_els_id=S0165489610000673&rfr_iscdi=true