On the existence of undominated elements of acyclic relations
We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point...
Gespeichert in:
Veröffentlicht in: | Mathematical social sciences 2010-11, Vol.60 (3), p.217-221 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 3 |
container_start_page | 217 |
container_title | Mathematical social sciences |
container_volume | 60 |
creator | Salonen, Hannu Vartiainen, Hannu |
description | We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given. |
doi_str_mv | 10.1016/j.mathsocsci.2010.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_786970605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165489610000673</els_id><sourcerecordid>786970605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-669bee3be7440630f9f88e70b82e92c0e523b8aef3d6de7617f668a37968ac093</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwH3LjlLCOWz8OHKDiqUq9wNlynY3qKo9iuxX99zgEwZHDrqXRzKz1EZJRKChQfrMtWhM3obfBuqKEJIMoANgJmVApVM4oladkkqzzfCYVPycXIWwBQCTzhNyuuixuMMNPFyJ2FrO-zvZd1beuMxGrDBtssYth0I092sbZzGNjouu7cEnOatMEvPp5p-T98eFt8ZwvV08vi7tlbpmaxZxztUZkaxSzGXAGtaqlRAFrWaIqLeC8ZGtpsGYVr1BwKmrOpWFCpW1BsSm5Hnt3vv_YY4i6dcFi05gO-33QQnIlgMM8OeXotL4PwWOtd961xh81BT0A01v9B0wPwDQInYCl6OsY9bhD-5tDxBRIfn3QzHBI65jmO8mMS8PS7AaJCl2WVG9im8ruxzJMWA4OvU7nBr6V82ijrnr3_4--AN39ko0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>786970605</pqid></control><display><type>article</type><title>On the existence of undominated elements of acyclic relations</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Salonen, Hannu ; Vartiainen, Hannu</creator><creatorcontrib>Salonen, Hannu ; Vartiainen, Hannu</creatorcontrib><description>We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given.</description><identifier>ISSN: 0165-4896</identifier><identifier>EISSN: 1879-3118</identifier><identifier>DOI: 10.1016/j.mathsocsci.2010.07.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acyclic relations ; Acyclic relations Utility function Maximal elements ; Domination ; Maximal elements ; Spatial analysis ; Topology ; Utility function ; Utility functions</subject><ispartof>Mathematical social sciences, 2010-11, Vol.60 (3), p.217-221</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c394t-669bee3be7440630f9f88e70b82e92c0e523b8aef3d6de7617f668a37968ac093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165489610000673$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeematsoc/v_3a60_3ay_3a2010_3ai_3a3_3ap_3a217-221.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Salonen, Hannu</creatorcontrib><creatorcontrib>Vartiainen, Hannu</creatorcontrib><title>On the existence of undominated elements of acyclic relations</title><title>Mathematical social sciences</title><description>We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given.</description><subject>Acyclic relations</subject><subject>Acyclic relations Utility function Maximal elements</subject><subject>Domination</subject><subject>Maximal elements</subject><subject>Spatial analysis</subject><subject>Topology</subject><subject>Utility function</subject><subject>Utility functions</subject><issn>0165-4896</issn><issn>1879-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEtPwzAQhC0EEqXwH3LjlLCOWz8OHKDiqUq9wNlynY3qKo9iuxX99zgEwZHDrqXRzKz1EZJRKChQfrMtWhM3obfBuqKEJIMoANgJmVApVM4oladkkqzzfCYVPycXIWwBQCTzhNyuuixuMMNPFyJ2FrO-zvZd1beuMxGrDBtssYth0I092sbZzGNjouu7cEnOatMEvPp5p-T98eFt8ZwvV08vi7tlbpmaxZxztUZkaxSzGXAGtaqlRAFrWaIqLeC8ZGtpsGYVr1BwKmrOpWFCpW1BsSm5Hnt3vv_YY4i6dcFi05gO-33QQnIlgMM8OeXotL4PwWOtd961xh81BT0A01v9B0wPwDQInYCl6OsY9bhD-5tDxBRIfn3QzHBI65jmO8mMS8PS7AaJCl2WVG9im8ruxzJMWA4OvU7nBr6V82ijrnr3_4--AN39ko0</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Salonen, Hannu</creator><creator>Vartiainen, Hannu</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20101101</creationdate><title>On the existence of undominated elements of acyclic relations</title><author>Salonen, Hannu ; Vartiainen, Hannu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-669bee3be7440630f9f88e70b82e92c0e523b8aef3d6de7617f668a37968ac093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acyclic relations</topic><topic>Acyclic relations Utility function Maximal elements</topic><topic>Domination</topic><topic>Maximal elements</topic><topic>Spatial analysis</topic><topic>Topology</topic><topic>Utility function</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salonen, Hannu</creatorcontrib><creatorcontrib>Vartiainen, Hannu</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Mathematical social sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salonen, Hannu</au><au>Vartiainen, Hannu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the existence of undominated elements of acyclic relations</atitle><jtitle>Mathematical social sciences</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>60</volume><issue>3</issue><spage>217</spage><epage>221</epage><pages>217-221</pages><issn>0165-4896</issn><eissn>1879-3118</eissn><abstract>We study the existence of undominated elements of acyclic relations. A sufficient condition for the existence is given without any topological assumptions when the dominance relation is finite valued. The condition says that there is a point such that all dominance sequences starting from this point are reducible. A dominance sequence is reducible, if it is possible to remove some elements from it so that the resulting subsequence is still a dominance sequence. Necessary and sufficient conditions are formulated for closed acyclic relations on compact Hausdorff spaces. Reducibility is the key concept also in this case. A representation theorem for such relations is given.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mathsocsci.2010.07.003</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-4896 |
ispartof | Mathematical social sciences, 2010-11, Vol.60 (3), p.217-221 |
issn | 0165-4896 1879-3118 |
language | eng |
recordid | cdi_proquest_miscellaneous_786970605 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Acyclic relations Acyclic relations Utility function Maximal elements Domination Maximal elements Spatial analysis Topology Utility function Utility functions |
title | On the existence of undominated elements of acyclic relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20existence%20of%20undominated%20elements%20of%20acyclic%20relations&rft.jtitle=Mathematical%20social%20sciences&rft.au=Salonen,%20Hannu&rft.date=2010-11-01&rft.volume=60&rft.issue=3&rft.spage=217&rft.epage=221&rft.pages=217-221&rft.issn=0165-4896&rft.eissn=1879-3118&rft_id=info:doi/10.1016/j.mathsocsci.2010.07.003&rft_dat=%3Cproquest_cross%3E786970605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=786970605&rft_id=info:pmid/&rft_els_id=S0165489610000673&rfr_iscdi=true |