Evolutionarily stable strategies for a finite population and a variable contest size

This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 1988-06, Vol.132 (4), p.469-478
1. Verfasser: Schaffer, Mark E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 4
container_start_page 469
container_title Journal of theoretical biology
container_volume 132
creator Schaffer, Mark E.
description This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is “spiteful”, in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this “spiteful” behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given.
doi_str_mv 10.1016/S0022-5193(88)80085-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78686805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519388800857</els_id><sourcerecordid>78686805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-85915ba4a3f9fe960e230e94ce8610ee5037cd0de76e4669695153da17cfeb13</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo67r6E4SeRA_VSdOkyUlE1g8QPLj3kKZTiXSbNWkX9Neb_WCvksNA5n3nnXkIuaRwS4GKuw-Aosg5VexayhsJIHleHZEpBcVzyUt6TKYHySk5i_ELAFTJxIRMWFEIyqopWczXvhsH53sTXPeTxcHUHaYSzICfDmPW-pCZrHW9GzBb-dXYmY08M32T_tfJtnVY3w8Yhyy6XzwnJ63pIl7s64wsnuaLx5f87f359fHhLbdlIYa0pKK8NqVhrWpRCcCCAarSohQUEDmwyjbQYCWwFEIJxSlnjaGVbbGmbEaudmNXwX-PKVwvXbTYdaZHP0ZdSZEe8CTkO6ENPsaArV4FtzThR1PQG5h6C1NvSGkp9RamrpLvch8w1ktsDq49vdS_3_UxHbl2GHS0DnuLjQtoB91490_CH29thMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78686805</pqid></control><display><type>article</type><title>Evolutionarily stable strategies for a finite population and a variable contest size</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schaffer, Mark E.</creator><creatorcontrib>Schaffer, Mark E.</creatorcontrib><description>This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is “spiteful”, in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this “spiteful” behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/S0022-5193(88)80085-7</identifier><identifier>PMID: 3226137</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Behavior - physiology ; Biological Evolution ; Game Theory ; Genetics, Population ; Humans ; Probability</subject><ispartof>Journal of theoretical biology, 1988-06, Vol.132 (4), p.469-478</ispartof><rights>1988 Academic Press Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-85915ba4a3f9fe960e230e94ce8610ee5037cd0de76e4669695153da17cfeb13</citedby><cites>FETCH-LOGICAL-c426t-85915ba4a3f9fe960e230e94ce8610ee5037cd0de76e4669695153da17cfeb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519388800857$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3226137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaffer, Mark E.</creatorcontrib><title>Evolutionarily stable strategies for a finite population and a variable contest size</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is “spiteful”, in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this “spiteful” behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given.</description><subject>Behavior - physiology</subject><subject>Biological Evolution</subject><subject>Game Theory</subject><subject>Genetics, Population</subject><subject>Humans</subject><subject>Probability</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMo67r6E4SeRA_VSdOkyUlE1g8QPLj3kKZTiXSbNWkX9Neb_WCvksNA5n3nnXkIuaRwS4GKuw-Aosg5VexayhsJIHleHZEpBcVzyUt6TKYHySk5i_ELAFTJxIRMWFEIyqopWczXvhsH53sTXPeTxcHUHaYSzICfDmPW-pCZrHW9GzBb-dXYmY08M32T_tfJtnVY3w8Yhyy6XzwnJ63pIl7s64wsnuaLx5f87f359fHhLbdlIYa0pKK8NqVhrWpRCcCCAarSohQUEDmwyjbQYCWwFEIJxSlnjaGVbbGmbEaudmNXwX-PKVwvXbTYdaZHP0ZdSZEe8CTkO6ENPsaArV4FtzThR1PQG5h6C1NvSGkp9RamrpLvch8w1ktsDq49vdS_3_UxHbl2GHS0DnuLjQtoB91490_CH29thMQ</recordid><startdate>19880622</startdate><enddate>19880622</enddate><creator>Schaffer, Mark E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19880622</creationdate><title>Evolutionarily stable strategies for a finite population and a variable contest size</title><author>Schaffer, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-85915ba4a3f9fe960e230e94ce8610ee5037cd0de76e4669695153da17cfeb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Behavior - physiology</topic><topic>Biological Evolution</topic><topic>Game Theory</topic><topic>Genetics, Population</topic><topic>Humans</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaffer, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaffer, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionarily stable strategies for a finite population and a variable contest size</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>1988-06-22</date><risdate>1988</risdate><volume>132</volume><issue>4</issue><spage>469</spage><epage>478</epage><pages>469-478</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is “spiteful”, in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this “spiteful” behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>3226137</pmid><doi>10.1016/S0022-5193(88)80085-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 1988-06, Vol.132 (4), p.469-478
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_78686805
source MEDLINE; Elsevier ScienceDirect Journals
subjects Behavior - physiology
Biological Evolution
Game Theory
Genetics, Population
Humans
Probability
title Evolutionarily stable strategies for a finite population and a variable contest size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionarily%20stable%20strategies%20for%20a%20finite%20population%20and%20a%20variable%20contest%20size&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Schaffer,%20Mark%20E.&rft.date=1988-06-22&rft.volume=132&rft.issue=4&rft.spage=469&rft.epage=478&rft.pages=469-478&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/S0022-5193(88)80085-7&rft_dat=%3Cproquest_cross%3E78686805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78686805&rft_id=info:pmid/3226137&rft_els_id=S0022519388800857&rfr_iscdi=true