Evolutionarily stable strategies for a finite population and a variable contest size
This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population an...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 1988-06, Vol.132 (4), p.469-478 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 478 |
---|---|
container_issue | 4 |
container_start_page | 469 |
container_title | Journal of theoretical biology |
container_volume | 132 |
creator | Schaffer, Mark E. |
description | This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is “spiteful”, in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this “spiteful” behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given. |
doi_str_mv | 10.1016/S0022-5193(88)80085-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78686805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519388800857</els_id><sourcerecordid>78686805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-85915ba4a3f9fe960e230e94ce8610ee5037cd0de76e4669695153da17cfeb13</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo67r6E4SeRA_VSdOkyUlE1g8QPLj3kKZTiXSbNWkX9Neb_WCvksNA5n3nnXkIuaRwS4GKuw-Aosg5VexayhsJIHleHZEpBcVzyUt6TKYHySk5i_ELAFTJxIRMWFEIyqopWczXvhsH53sTXPeTxcHUHaYSzICfDmPW-pCZrHW9GzBb-dXYmY08M32T_tfJtnVY3w8Yhyy6XzwnJ63pIl7s64wsnuaLx5f87f359fHhLbdlIYa0pKK8NqVhrWpRCcCCAarSohQUEDmwyjbQYCWwFEIJxSlnjaGVbbGmbEaudmNXwX-PKVwvXbTYdaZHP0ZdSZEe8CTkO6ENPsaArV4FtzThR1PQG5h6C1NvSGkp9RamrpLvch8w1ktsDq49vdS_3_UxHbl2GHS0DnuLjQtoB91490_CH29thMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78686805</pqid></control><display><type>article</type><title>Evolutionarily stable strategies for a finite population and a variable contest size</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Schaffer, Mark E.</creator><creatorcontrib>Schaffer, Mark E.</creatorcontrib><description>This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is “spiteful”, in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this “spiteful” behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/S0022-5193(88)80085-7</identifier><identifier>PMID: 3226137</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Behavior - physiology ; Biological Evolution ; Game Theory ; Genetics, Population ; Humans ; Probability</subject><ispartof>Journal of theoretical biology, 1988-06, Vol.132 (4), p.469-478</ispartof><rights>1988 Academic Press Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-85915ba4a3f9fe960e230e94ce8610ee5037cd0de76e4669695153da17cfeb13</citedby><cites>FETCH-LOGICAL-c426t-85915ba4a3f9fe960e230e94ce8610ee5037cd0de76e4669695153da17cfeb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519388800857$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3226137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaffer, Mark E.</creatorcontrib><title>Evolutionarily stable strategies for a finite population and a variable contest size</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is “spiteful”, in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this “spiteful” behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given.</description><subject>Behavior - physiology</subject><subject>Biological Evolution</subject><subject>Game Theory</subject><subject>Genetics, Population</subject><subject>Humans</subject><subject>Probability</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMo67r6E4SeRA_VSdOkyUlE1g8QPLj3kKZTiXSbNWkX9Neb_WCvksNA5n3nnXkIuaRwS4GKuw-Aosg5VexayhsJIHleHZEpBcVzyUt6TKYHySk5i_ELAFTJxIRMWFEIyqopWczXvhsH53sTXPeTxcHUHaYSzICfDmPW-pCZrHW9GzBb-dXYmY08M32T_tfJtnVY3w8Yhyy6XzwnJ63pIl7s64wsnuaLx5f87f359fHhLbdlIYa0pKK8NqVhrWpRCcCCAarSohQUEDmwyjbQYCWwFEIJxSlnjaGVbbGmbEaudmNXwX-PKVwvXbTYdaZHP0ZdSZEe8CTkO6ENPsaArV4FtzThR1PQG5h6C1NvSGkp9RamrpLvch8w1ktsDq49vdS_3_UxHbl2GHS0DnuLjQtoB91490_CH29thMQ</recordid><startdate>19880622</startdate><enddate>19880622</enddate><creator>Schaffer, Mark E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19880622</creationdate><title>Evolutionarily stable strategies for a finite population and a variable contest size</title><author>Schaffer, Mark E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-85915ba4a3f9fe960e230e94ce8610ee5037cd0de76e4669695153da17cfeb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Behavior - physiology</topic><topic>Biological Evolution</topic><topic>Game Theory</topic><topic>Genetics, Population</topic><topic>Humans</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaffer, Mark E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaffer, Mark E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionarily stable strategies for a finite population and a variable contest size</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>1988-06-22</date><risdate>1988</risdate><volume>132</volume><issue>4</issue><spage>469</spage><epage>478</epage><pages>469-478</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>This paper presents a generalization of Maynard Smith's concept of an evolutionarily stable strategy (ESS) to cover the cases of a finite population and a variable contest size. Both equilibrium and stability conditions are analysed. The standard Maynard Smith ESS with an infinite population and a contest size of two (pairwise contests) is shown to be a special case of this generalized ESS. An important implication of the generalized ESS is that in finite populations the behaviour of an ESS player is “spiteful”, in the sense that an ESS player acts not only to increase his payoff but also to decrease the payoffs of his competitors. The degree of this “spiteful” behaviour is shown to increase with a decrease in the population size, and so is most likely to be observed in small populations. The paper concludes with an extended example: a symmetric two-pure-strategies two-player game for a finite population. It is shown that a mixed strategy ESS is globally stable against invasion by any one type of mutant strategist. The condition for the start of simultaneous invasion by two types of mutant is also given.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>3226137</pmid><doi>10.1016/S0022-5193(88)80085-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 1988-06, Vol.132 (4), p.469-478 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_78686805 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Behavior - physiology Biological Evolution Game Theory Genetics, Population Humans Probability |
title | Evolutionarily stable strategies for a finite population and a variable contest size |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionarily%20stable%20strategies%20for%20a%20finite%20population%20and%20a%20variable%20contest%20size&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Schaffer,%20Mark%20E.&rft.date=1988-06-22&rft.volume=132&rft.issue=4&rft.spage=469&rft.epage=478&rft.pages=469-478&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/S0022-5193(88)80085-7&rft_dat=%3Cproquest_cross%3E78686805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78686805&rft_id=info:pmid/3226137&rft_els_id=S0022519388800857&rfr_iscdi=true |