Hormonal and non-hormonal regulation of glutamine synthetase in the developing neural retina
Two isoforms of the glucocorticoid receptor, with apparent molecular mass of 90 and 95 kDa, are expressed in embryonic chicken neural retina. The 95-kDa receptor represents a hyperphosphorylated form of the 90-kDa receptor. Activation of the glucocorticoid receptor by cortisol results in a dose-depe...
Gespeichert in:
Veröffentlicht in: | Brain research. Molecular brain research. 1996-12, Vol.43 (1), p.321-329 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two isoforms of the glucocorticoid receptor, with apparent molecular mass of 90 and 95 kDa, are expressed in embryonic chicken neural retina. The 95-kDa receptor represents a hyperphosphorylated form of the 90-kDa receptor. Activation of the glucocorticoid receptor by cortisol results in a dose-dependent increase in receptor phosphorylation, translocation of receptor molecules into the nucleus and a decline in the total amount of the receptor. Activation of the glucocorticoid receptor can also be observed in the developing retinal tissue in ovo. At late embryonic ages, when the systemic level of glucocorticoids increases, a substantial quantity of receptor molecules becomes translocated into the nucleus, the relative level of the 95-kDa isoform increases, and the total amount of receptor declines. Activation of the receptor molecules in ovo correlates directly with an increase in transcription of the glucocorticoid-inducible gene, glutamine synthetase. The close correlation between the increase in systemic glucocorticoids, activation of glucocorticoid receptor molecules and induction of glutamine synthetase gene transcription suggests that glucocorticoids are directly involved in the developmental control of glutamine synthetase expression. Long-term organ culturing of embryonic retinal tissue in the absence of hormone results in an increase in glutamine synthetase expression. This increase, which is only 5 to 10% of that observed in ovo, is not mediated by activated receptor molecules and represents a mechanism for non-hormonal regulation of glutamine synthetase. |
---|---|
ISSN: | 0169-328X 1872-6941 |
DOI: | 10.1016/S0169-328X(96)00213-6 |