The effects of in vivo and in vitro non-enzymatic glycosylation and glycoxidation on physico-chemical properties of haemoglobin in control and diabetic patients

The erythrocyte deformability, which is related to erythrocyte internal viscosity, was suggested to depend upon the physico-chemical properties of haemoglobin. In the present study we employed ESR spectroscopy in order to explore further the extent to which the in vivo or in vitro glycation and/or g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biochemistry & cell biology 1996-12, Vol.28 (12), p.1393-1403
Hauptverfasser: Watala, Cezary, Golański, Jacek, Witas, Henryk, Gurbiel, Ryszard, Gwoździński, Krzysztof, Trojanowski, Zygmunt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1403
container_issue 12
container_start_page 1393
container_title The international journal of biochemistry & cell biology
container_volume 28
creator Watala, Cezary
Golański, Jacek
Witas, Henryk
Gurbiel, Ryszard
Gwoździński, Krzysztof
Trojanowski, Zygmunt
description The erythrocyte deformability, which is related to erythrocyte internal viscosity, was suggested to depend upon the physico-chemical properties of haemoglobin. In the present study we employed ESR spectroscopy in order to explore further the extent to which the in vivo or in vitro glycation and/or glycoxidation might affect haemoglobin structure and conformation. We revealed that under both in vivo and in vitro conditions the attachment of glucose induced a mobilization of thiol groups in the selected domains of haemoglobin molecules (the increased h +1 h 0 parameter of maleimide spin label, MSL; 0.377 ± 0.021 in diabetics vs 0.338 ± 0.017 in controls, n = 12, P < 0.0001). The relative rotational correlation time ( τ c ) of two spin labels, TEMPONE and TEMPAMINE, respectively, in erythrocyte insides (5.22 ± 0.42 in diabetics, n = 21 vs 4.79 ± 0.38, n = 16 in controls, P < 0.005) and in the solutions of in vitro glycated haemoglobin, were increased. Neither oxidation nor crosslinking of thiol groups was evidenced in glycated and/or oxidized haemoglobin. In addition, erythrocyte deformability was found to be reduced in type 2 diabetic patients (6.71 ± 1.08, n = 28 vs 7.31 ± 0.96, n = 21, P < 0.015). In conclusion, these observations suggest that: the attachment of glucose to haemoglobin might have decreased the mobility of the Lys-adjacent Cys residues, thus leading to the increased h +1 h 0 parameter of MSL. Such structural changes in haemoglobin owing to non-enzymatic glycosylation may contribute to the increased viscosity of haemoglobin solutions ( r = 0.497, P < 0.0035) and the enhanced internal viscosity of diabetic erythrocytes ( r = 0.503, P < 0.003). We argue that such changes in haemoglobin, and consequently in red blood cells, might contribute to the handicapped oxygen release under tissue hypoxia in the diabetic state.
doi_str_mv 10.1016/S1357-2725(96)00087-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78676167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1357272596000878</els_id><sourcerecordid>78676167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-12632594f921482f461b5963be66ee2f21c32b588c0ac70801f3bfc19835a5783</originalsourceid><addsrcrecordid>eNqFkctu1TAQhi0EKm3hESplVdFFwJfjS1YIVb0gVWJBWVuOM-4xSuzUzjlqeBoeFZ_kwBZpJI_Hv-ez50foguCPBBPx6TthXNZUUv6hEVcYYyVr9QqdEiVVzZXkr0v-V_IWneX8s4gIp-wEnTSYUtqIU_T7cQsVOAd2ylV0lQ_V3u9jZUK35lOKVYihhvBrHszkbfXUzzbmuS-bGBbhUnnx3VopMW7n7G2s7RYGb01fjSmOkCYPC2RrYIhPfWwLoYSNoVD6pVXnTQsHyliaQZjyO_TGmT7D--N6jn7c3jxe39cP3-6-Xn95qC0TeKoJFYzyZuMaSjaKuo0gLW8Ea0EIAOoosYy2XCmLjZVYYeJY6yxpFOOGS8XO0eXatzz1eQd50oPPFvreBIi7rKUSUhAhi5CvQptizgmcHpMfTJo1wfrgjF6c0Yex60boxRl9AFwcAbt2gO7fraMV5fzzeg7ll3sPSWdbJmCh86m4o7vo_0P4A4bboNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78676167</pqid></control><display><type>article</type><title>The effects of in vivo and in vitro non-enzymatic glycosylation and glycoxidation on physico-chemical properties of haemoglobin in control and diabetic patients</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Watala, Cezary ; Golański, Jacek ; Witas, Henryk ; Gurbiel, Ryszard ; Gwoździński, Krzysztof ; Trojanowski, Zygmunt</creator><creatorcontrib>Watala, Cezary ; Golański, Jacek ; Witas, Henryk ; Gurbiel, Ryszard ; Gwoździński, Krzysztof ; Trojanowski, Zygmunt</creatorcontrib><description>The erythrocyte deformability, which is related to erythrocyte internal viscosity, was suggested to depend upon the physico-chemical properties of haemoglobin. In the present study we employed ESR spectroscopy in order to explore further the extent to which the in vivo or in vitro glycation and/or glycoxidation might affect haemoglobin structure and conformation. We revealed that under both in vivo and in vitro conditions the attachment of glucose induced a mobilization of thiol groups in the selected domains of haemoglobin molecules (the increased h +1 h 0 parameter of maleimide spin label, MSL; 0.377 ± 0.021 in diabetics vs 0.338 ± 0.017 in controls, n = 12, P &lt; 0.0001). The relative rotational correlation time ( τ c ) of two spin labels, TEMPONE and TEMPAMINE, respectively, in erythrocyte insides (5.22 ± 0.42 in diabetics, n = 21 vs 4.79 ± 0.38, n = 16 in controls, P &lt; 0.005) and in the solutions of in vitro glycated haemoglobin, were increased. Neither oxidation nor crosslinking of thiol groups was evidenced in glycated and/or oxidized haemoglobin. In addition, erythrocyte deformability was found to be reduced in type 2 diabetic patients (6.71 ± 1.08, n = 28 vs 7.31 ± 0.96, n = 21, P &lt; 0.015). In conclusion, these observations suggest that: the attachment of glucose to haemoglobin might have decreased the mobility of the Lys-adjacent Cys residues, thus leading to the increased h +1 h 0 parameter of MSL. Such structural changes in haemoglobin owing to non-enzymatic glycosylation may contribute to the increased viscosity of haemoglobin solutions ( r = 0.497, P &lt; 0.0035) and the enhanced internal viscosity of diabetic erythrocytes ( r = 0.503, P &lt; 0.003). We argue that such changes in haemoglobin, and consequently in red blood cells, might contribute to the handicapped oxygen release under tissue hypoxia in the diabetic state.</description><identifier>ISSN: 1357-2725</identifier><identifier>EISSN: 1878-5875</identifier><identifier>DOI: 10.1016/S1357-2725(96)00087-8</identifier><identifier>PMID: 9022296</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adult ; Aged ; Case-Control Studies ; Chemical Phenomena ; Chemistry, Physical ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - blood ; Electron Spin Resonance Spectroscopy ; Erythrocyte Deformability ; Erythrocyte internal viscosity ; ESR ; Female ; Glycated haemoglobin ; Glycated Hemoglobin A - chemistry ; Glycated Hemoglobin A - metabolism ; Glycosylation ; Glycoxidation ; Hemoglobins - chemistry ; Hemoglobins - metabolism ; Humans ; In Vitro Techniques ; Male ; Middle Aged ; Molecular Structure ; Non-enzymatic glycosylation</subject><ispartof>The international journal of biochemistry &amp; cell biology, 1996-12, Vol.28 (12), p.1393-1403</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-12632594f921482f461b5963be66ee2f21c32b588c0ac70801f3bfc19835a5783</citedby><cites>FETCH-LOGICAL-c360t-12632594f921482f461b5963be66ee2f21c32b588c0ac70801f3bfc19835a5783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1357-2725(96)00087-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9022296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watala, Cezary</creatorcontrib><creatorcontrib>Golański, Jacek</creatorcontrib><creatorcontrib>Witas, Henryk</creatorcontrib><creatorcontrib>Gurbiel, Ryszard</creatorcontrib><creatorcontrib>Gwoździński, Krzysztof</creatorcontrib><creatorcontrib>Trojanowski, Zygmunt</creatorcontrib><title>The effects of in vivo and in vitro non-enzymatic glycosylation and glycoxidation on physico-chemical properties of haemoglobin in control and diabetic patients</title><title>The international journal of biochemistry &amp; cell biology</title><addtitle>Int J Biochem Cell Biol</addtitle><description>The erythrocyte deformability, which is related to erythrocyte internal viscosity, was suggested to depend upon the physico-chemical properties of haemoglobin. In the present study we employed ESR spectroscopy in order to explore further the extent to which the in vivo or in vitro glycation and/or glycoxidation might affect haemoglobin structure and conformation. We revealed that under both in vivo and in vitro conditions the attachment of glucose induced a mobilization of thiol groups in the selected domains of haemoglobin molecules (the increased h +1 h 0 parameter of maleimide spin label, MSL; 0.377 ± 0.021 in diabetics vs 0.338 ± 0.017 in controls, n = 12, P &lt; 0.0001). The relative rotational correlation time ( τ c ) of two spin labels, TEMPONE and TEMPAMINE, respectively, in erythrocyte insides (5.22 ± 0.42 in diabetics, n = 21 vs 4.79 ± 0.38, n = 16 in controls, P &lt; 0.005) and in the solutions of in vitro glycated haemoglobin, were increased. Neither oxidation nor crosslinking of thiol groups was evidenced in glycated and/or oxidized haemoglobin. In addition, erythrocyte deformability was found to be reduced in type 2 diabetic patients (6.71 ± 1.08, n = 28 vs 7.31 ± 0.96, n = 21, P &lt; 0.015). In conclusion, these observations suggest that: the attachment of glucose to haemoglobin might have decreased the mobility of the Lys-adjacent Cys residues, thus leading to the increased h +1 h 0 parameter of MSL. Such structural changes in haemoglobin owing to non-enzymatic glycosylation may contribute to the increased viscosity of haemoglobin solutions ( r = 0.497, P &lt; 0.0035) and the enhanced internal viscosity of diabetic erythrocytes ( r = 0.503, P &lt; 0.003). We argue that such changes in haemoglobin, and consequently in red blood cells, might contribute to the handicapped oxygen release under tissue hypoxia in the diabetic state.</description><subject>Adult</subject><subject>Aged</subject><subject>Case-Control Studies</subject><subject>Chemical Phenomena</subject><subject>Chemistry, Physical</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Erythrocyte Deformability</subject><subject>Erythrocyte internal viscosity</subject><subject>ESR</subject><subject>Female</subject><subject>Glycated haemoglobin</subject><subject>Glycated Hemoglobin A - chemistry</subject><subject>Glycated Hemoglobin A - metabolism</subject><subject>Glycosylation</subject><subject>Glycoxidation</subject><subject>Hemoglobins - chemistry</subject><subject>Hemoglobins - metabolism</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Molecular Structure</subject><subject>Non-enzymatic glycosylation</subject><issn>1357-2725</issn><issn>1878-5875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1TAQhi0EKm3hESplVdFFwJfjS1YIVb0gVWJBWVuOM-4xSuzUzjlqeBoeFZ_kwBZpJI_Hv-ez50foguCPBBPx6TthXNZUUv6hEVcYYyVr9QqdEiVVzZXkr0v-V_IWneX8s4gIp-wEnTSYUtqIU_T7cQsVOAd2ylV0lQ_V3u9jZUK35lOKVYihhvBrHszkbfXUzzbmuS-bGBbhUnnx3VopMW7n7G2s7RYGb01fjSmOkCYPC2RrYIhPfWwLoYSNoVD6pVXnTQsHyliaQZjyO_TGmT7D--N6jn7c3jxe39cP3-6-Xn95qC0TeKoJFYzyZuMaSjaKuo0gLW8Ea0EIAOoosYy2XCmLjZVYYeJY6yxpFOOGS8XO0eXatzz1eQd50oPPFvreBIi7rKUSUhAhi5CvQptizgmcHpMfTJo1wfrgjF6c0Yex60boxRl9AFwcAbt2gO7fraMV5fzzeg7ll3sPSWdbJmCh86m4o7vo_0P4A4bboNY</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Watala, Cezary</creator><creator>Golański, Jacek</creator><creator>Witas, Henryk</creator><creator>Gurbiel, Ryszard</creator><creator>Gwoździński, Krzysztof</creator><creator>Trojanowski, Zygmunt</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19961201</creationdate><title>The effects of in vivo and in vitro non-enzymatic glycosylation and glycoxidation on physico-chemical properties of haemoglobin in control and diabetic patients</title><author>Watala, Cezary ; Golański, Jacek ; Witas, Henryk ; Gurbiel, Ryszard ; Gwoździński, Krzysztof ; Trojanowski, Zygmunt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-12632594f921482f461b5963be66ee2f21c32b588c0ac70801f3bfc19835a5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Case-Control Studies</topic><topic>Chemical Phenomena</topic><topic>Chemistry, Physical</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Erythrocyte Deformability</topic><topic>Erythrocyte internal viscosity</topic><topic>ESR</topic><topic>Female</topic><topic>Glycated haemoglobin</topic><topic>Glycated Hemoglobin A - chemistry</topic><topic>Glycated Hemoglobin A - metabolism</topic><topic>Glycosylation</topic><topic>Glycoxidation</topic><topic>Hemoglobins - chemistry</topic><topic>Hemoglobins - metabolism</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Molecular Structure</topic><topic>Non-enzymatic glycosylation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watala, Cezary</creatorcontrib><creatorcontrib>Golański, Jacek</creatorcontrib><creatorcontrib>Witas, Henryk</creatorcontrib><creatorcontrib>Gurbiel, Ryszard</creatorcontrib><creatorcontrib>Gwoździński, Krzysztof</creatorcontrib><creatorcontrib>Trojanowski, Zygmunt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of biochemistry &amp; cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watala, Cezary</au><au>Golański, Jacek</au><au>Witas, Henryk</au><au>Gurbiel, Ryszard</au><au>Gwoździński, Krzysztof</au><au>Trojanowski, Zygmunt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of in vivo and in vitro non-enzymatic glycosylation and glycoxidation on physico-chemical properties of haemoglobin in control and diabetic patients</atitle><jtitle>The international journal of biochemistry &amp; cell biology</jtitle><addtitle>Int J Biochem Cell Biol</addtitle><date>1996-12-01</date><risdate>1996</risdate><volume>28</volume><issue>12</issue><spage>1393</spage><epage>1403</epage><pages>1393-1403</pages><issn>1357-2725</issn><eissn>1878-5875</eissn><abstract>The erythrocyte deformability, which is related to erythrocyte internal viscosity, was suggested to depend upon the physico-chemical properties of haemoglobin. In the present study we employed ESR spectroscopy in order to explore further the extent to which the in vivo or in vitro glycation and/or glycoxidation might affect haemoglobin structure and conformation. We revealed that under both in vivo and in vitro conditions the attachment of glucose induced a mobilization of thiol groups in the selected domains of haemoglobin molecules (the increased h +1 h 0 parameter of maleimide spin label, MSL; 0.377 ± 0.021 in diabetics vs 0.338 ± 0.017 in controls, n = 12, P &lt; 0.0001). The relative rotational correlation time ( τ c ) of two spin labels, TEMPONE and TEMPAMINE, respectively, in erythrocyte insides (5.22 ± 0.42 in diabetics, n = 21 vs 4.79 ± 0.38, n = 16 in controls, P &lt; 0.005) and in the solutions of in vitro glycated haemoglobin, were increased. Neither oxidation nor crosslinking of thiol groups was evidenced in glycated and/or oxidized haemoglobin. In addition, erythrocyte deformability was found to be reduced in type 2 diabetic patients (6.71 ± 1.08, n = 28 vs 7.31 ± 0.96, n = 21, P &lt; 0.015). In conclusion, these observations suggest that: the attachment of glucose to haemoglobin might have decreased the mobility of the Lys-adjacent Cys residues, thus leading to the increased h +1 h 0 parameter of MSL. Such structural changes in haemoglobin owing to non-enzymatic glycosylation may contribute to the increased viscosity of haemoglobin solutions ( r = 0.497, P &lt; 0.0035) and the enhanced internal viscosity of diabetic erythrocytes ( r = 0.503, P &lt; 0.003). We argue that such changes in haemoglobin, and consequently in red blood cells, might contribute to the handicapped oxygen release under tissue hypoxia in the diabetic state.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>9022296</pmid><doi>10.1016/S1357-2725(96)00087-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1357-2725
ispartof The international journal of biochemistry & cell biology, 1996-12, Vol.28 (12), p.1393-1403
issn 1357-2725
1878-5875
language eng
recordid cdi_proquest_miscellaneous_78676167
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adult
Aged
Case-Control Studies
Chemical Phenomena
Chemistry, Physical
Diabetes mellitus
Diabetes Mellitus, Type 2 - blood
Electron Spin Resonance Spectroscopy
Erythrocyte Deformability
Erythrocyte internal viscosity
ESR
Female
Glycated haemoglobin
Glycated Hemoglobin A - chemistry
Glycated Hemoglobin A - metabolism
Glycosylation
Glycoxidation
Hemoglobins - chemistry
Hemoglobins - metabolism
Humans
In Vitro Techniques
Male
Middle Aged
Molecular Structure
Non-enzymatic glycosylation
title The effects of in vivo and in vitro non-enzymatic glycosylation and glycoxidation on physico-chemical properties of haemoglobin in control and diabetic patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20in%20vivo%20and%20in%20vitro%20non-enzymatic%20glycosylation%20and%20glycoxidation%20on%20physico-chemical%20properties%20of%20haemoglobin%20in%20control%20and%20diabetic%20patients&rft.jtitle=The%20international%20journal%20of%20biochemistry%20&%20cell%20biology&rft.au=Watala,%20Cezary&rft.date=1996-12-01&rft.volume=28&rft.issue=12&rft.spage=1393&rft.epage=1403&rft.pages=1393-1403&rft.issn=1357-2725&rft.eissn=1878-5875&rft_id=info:doi/10.1016/S1357-2725(96)00087-8&rft_dat=%3Cproquest_cross%3E78676167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78676167&rft_id=info:pmid/9022296&rft_els_id=S1357272596000878&rfr_iscdi=true