Neutrophil Oxygen Radical Production by Dialysis Membranes
The ability of different dialysis membranes to activate polymorphonuclear neutrophil oxygen radical production was investigated with chemiluminescence. All the six membranes, namely cuprophan, cellulose acetate, polycarbonate, polysulphone, polyacrilonitrile and polymethylmethacrylate were able to i...
Gespeichert in:
Veröffentlicht in: | Nephrology, dialysis, transplantation dialysis, transplantation, 1988, Vol.3 (5), p.661-665 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability of different dialysis membranes to activate polymorphonuclear neutrophil oxygen radical production was investigated with chemiluminescence. All the six membranes, namely cuprophan, cellulose acetate, polycarbonate, polysulphone, polyacrilonitrile and polymethylmethacrylate were able to interact with neutrophils and stimulate their oxygen radical production, the highest responses being seen with polyacrilonitrile, polymethylmethacrylate and polycarbonate. To analyse the role of complement in this interaction, fresh plasma, heat inactivated and zymosan-activated plasma were added: with fresh plasma oxygen radical production was stimulated on cuprophan, cellulose acetate and polysulphone, not modified on polycarbonate, and decreased on polyacrilonitrile and polymethylmethacrylate. With heat-inactivated plasma, the responses were decreased or abrogated on all the membranes except polycarbonate and polymethylmethacrylate, whereas with zymosanactivated plasma similar responses to fresh plasma were observed. In addition, when plasma was used to precoat the membrane, cuprophan, cellulose acetate and polysulphone disclosed an enhanced neutrophil oxidative burst, while precoated polyacrilonitrile and polymethylmethacrylate were less stimulatory than uncoated membranes. In contrast the precoating of polycarbonate did not modify oxygen radical production. These data suggest that neutrophil activation occurs by direct membrane neutrophil interaction. Plasmatic factors modulate this interaction but complement seems involved on cellulosic and polysulphone membranes only. Therefore, it appears that oxygen radicals produced from contact of neutrophils with the dialysis membrane might play an initial and/or additional role in the events occurring at the initiation of haemodialysis. |
---|---|
ISSN: | 0931-0509 1460-2385 |
DOI: | 10.1093/oxfordjournals.ndt.a091724 |