Metabolism of ricinoleate by Neurospora crassa

Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 1996-11, Vol.46 (4), p.382-387
Hauptverfasser: Goodrich-Tanrikulu, M, Stafford, A.E, Lin, J.T, McKeon, T.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 4
container_start_page 382
container_title Applied microbiology and biotechnology
container_volume 46
creator Goodrich-Tanrikulu, M
Stafford, A.E
Lin, J.T
McKeon, T.A
description Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 micromolar-3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.
doi_str_mv 10.1007/BF00166233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78652716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78652716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ca057de41599dc85e142541da8ba085122deccdaa724d9e81efa3e272f2300c03</originalsourceid><addsrcrecordid>eNqF0T1Pw0AMBuATApXysbAjMiAGpJSzL_eRESoKSAUG6Bw5lwsKSppylwz99wRalZHJgx9Z9mvGzoBPgHN9czfjHJRCIfbYGBKBMVeQ7LMxBy1jLVNzyI5C-BwUGqVGbGRSozXqMZs8u47ytq5CE7Vl5CtbLdvaUeeifB29uN63YdV6iqynEOiEHZRUB3e6rcdsMbt_nz7G89eHp-ntPLYCZRdb4lIXLgGZpoU10kGCMoGCTE7cSEAsnLUFkcakSJ0BV5JwqLFEwbnl4phdbeaufPvVu9BlTRWsq2taurYPmTZKogb1LwSFWhmjB3i9gXa4KHhXZitfNeTXGfDsJ8XsL8UBn2-n9nnjih3dxjb0L7d9Cpbq0tPSVmHHUPJE_C53sWEltRl9-IEs3pCD4MMbQEghvgFfTYCW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16276887</pqid></control><display><type>article</type><title>Metabolism of ricinoleate by Neurospora crassa</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Goodrich-Tanrikulu, M ; Stafford, A.E ; Lin, J.T ; McKeon, T.A</creator><creatorcontrib>Goodrich-Tanrikulu, M ; Stafford, A.E ; Lin, J.T ; McKeon, T.A</creatorcontrib><description>Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 micromolar-3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/BF00166233</identifier><identifier>PMID: 8987727</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Biological and medical sciences ; Biological Sciences ; Biotechnology ; computer science ; Fatty Acids - analysis ; Fundamental and applied biological sciences. Psychology ; Glycolipids - chemistry ; information science ; libraries ; Lipids - biosynthesis ; Lipids - chemistry ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Neurospora crassa - drug effects ; Neurospora crassa - growth &amp; development ; Neurospora crassa - metabolism ; Ricinoleic Acids - metabolism ; Ricinoleic Acids - pharmacology ; Triglycerides - analysis</subject><ispartof>Applied microbiology and biotechnology, 1996-11, Vol.46 (4), p.382-387</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-ca057de41599dc85e142541da8ba085122deccdaa724d9e81efa3e272f2300c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2504316$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8987727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goodrich-Tanrikulu, M</creatorcontrib><creatorcontrib>Stafford, A.E</creatorcontrib><creatorcontrib>Lin, J.T</creatorcontrib><creatorcontrib>McKeon, T.A</creatorcontrib><title>Metabolism of ricinoleate by Neurospora crassa</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 micromolar-3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.</description><subject>Biological and medical sciences</subject><subject>Biological Sciences</subject><subject>Biotechnology</subject><subject>computer science</subject><subject>Fatty Acids - analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycolipids - chemistry</subject><subject>information science</subject><subject>libraries</subject><subject>Lipids - biosynthesis</subject><subject>Lipids - chemistry</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Neurospora crassa - drug effects</subject><subject>Neurospora crassa - growth &amp; development</subject><subject>Neurospora crassa - metabolism</subject><subject>Ricinoleic Acids - metabolism</subject><subject>Ricinoleic Acids - pharmacology</subject><subject>Triglycerides - analysis</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0T1Pw0AMBuATApXysbAjMiAGpJSzL_eRESoKSAUG6Bw5lwsKSppylwz99wRalZHJgx9Z9mvGzoBPgHN9czfjHJRCIfbYGBKBMVeQ7LMxBy1jLVNzyI5C-BwUGqVGbGRSozXqMZs8u47ytq5CE7Vl5CtbLdvaUeeifB29uN63YdV6iqynEOiEHZRUB3e6rcdsMbt_nz7G89eHp-ntPLYCZRdb4lIXLgGZpoU10kGCMoGCTE7cSEAsnLUFkcakSJ0BV5JwqLFEwbnl4phdbeaufPvVu9BlTRWsq2taurYPmTZKogb1LwSFWhmjB3i9gXa4KHhXZitfNeTXGfDsJ8XsL8UBn2-n9nnjih3dxjb0L7d9Cpbq0tPSVmHHUPJE_C53sWEltRl9-IEs3pCD4MMbQEghvgFfTYCW</recordid><startdate>19961101</startdate><enddate>19961101</enddate><creator>Goodrich-Tanrikulu, M</creator><creator>Stafford, A.E</creator><creator>Lin, J.T</creator><creator>McKeon, T.A</creator><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19961101</creationdate><title>Metabolism of ricinoleate by Neurospora crassa</title><author>Goodrich-Tanrikulu, M ; Stafford, A.E ; Lin, J.T ; McKeon, T.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ca057de41599dc85e142541da8ba085122deccdaa724d9e81efa3e272f2300c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biological and medical sciences</topic><topic>Biological Sciences</topic><topic>Biotechnology</topic><topic>computer science</topic><topic>Fatty Acids - analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycolipids - chemistry</topic><topic>information science</topic><topic>libraries</topic><topic>Lipids - biosynthesis</topic><topic>Lipids - chemistry</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Neurospora crassa - drug effects</topic><topic>Neurospora crassa - growth &amp; development</topic><topic>Neurospora crassa - metabolism</topic><topic>Ricinoleic Acids - metabolism</topic><topic>Ricinoleic Acids - pharmacology</topic><topic>Triglycerides - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodrich-Tanrikulu, M</creatorcontrib><creatorcontrib>Stafford, A.E</creatorcontrib><creatorcontrib>Lin, J.T</creatorcontrib><creatorcontrib>McKeon, T.A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodrich-Tanrikulu, M</au><au>Stafford, A.E</au><au>Lin, J.T</au><au>McKeon, T.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolism of ricinoleate by Neurospora crassa</atitle><jtitle>Applied microbiology and biotechnology</jtitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>1996-11-01</date><risdate>1996</risdate><volume>46</volume><issue>4</issue><spage>382</spage><epage>387</epage><pages>382-387</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 micromolar-3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>8987727</pmid><doi>10.1007/BF00166233</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 1996-11, Vol.46 (4), p.382-387
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_78652716
source MEDLINE; SpringerNature Journals
subjects Biological and medical sciences
Biological Sciences
Biotechnology
computer science
Fatty Acids - analysis
Fundamental and applied biological sciences. Psychology
Glycolipids - chemistry
information science
libraries
Lipids - biosynthesis
Lipids - chemistry
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Neurospora crassa - drug effects
Neurospora crassa - growth & development
Neurospora crassa - metabolism
Ricinoleic Acids - metabolism
Ricinoleic Acids - pharmacology
Triglycerides - analysis
title Metabolism of ricinoleate by Neurospora crassa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolism%20of%20ricinoleate%20by%20Neurospora%20crassa&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Goodrich-Tanrikulu,%20M&rft.date=1996-11-01&rft.volume=46&rft.issue=4&rft.spage=382&rft.epage=387&rft.pages=382-387&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/BF00166233&rft_dat=%3Cproquest_cross%3E78652716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16276887&rft_id=info:pmid/8987727&rfr_iscdi=true