Metabolism of ricinoleate by Neurospora crassa
Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is cr...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 1996-11, Vol.46 (4), p.382-387 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 4 |
container_start_page | 382 |
container_title | Applied microbiology and biotechnology |
container_volume | 46 |
creator | Goodrich-Tanrikulu, M Stafford, A.E Lin, J.T McKeon, T.A |
description | Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 micromolar-3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation. |
doi_str_mv | 10.1007/BF00166233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78652716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78652716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ca057de41599dc85e142541da8ba085122deccdaa724d9e81efa3e272f2300c03</originalsourceid><addsrcrecordid>eNqF0T1Pw0AMBuATApXysbAjMiAGpJSzL_eRESoKSAUG6Bw5lwsKSppylwz99wRalZHJgx9Z9mvGzoBPgHN9czfjHJRCIfbYGBKBMVeQ7LMxBy1jLVNzyI5C-BwUGqVGbGRSozXqMZs8u47ytq5CE7Vl5CtbLdvaUeeifB29uN63YdV6iqynEOiEHZRUB3e6rcdsMbt_nz7G89eHp-ntPLYCZRdb4lIXLgGZpoU10kGCMoGCTE7cSEAsnLUFkcakSJ0BV5JwqLFEwbnl4phdbeaufPvVu9BlTRWsq2taurYPmTZKogb1LwSFWhmjB3i9gXa4KHhXZitfNeTXGfDsJ8XsL8UBn2-n9nnjih3dxjb0L7d9Cpbq0tPSVmHHUPJE_C53sWEltRl9-IEs3pCD4MMbQEghvgFfTYCW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16276887</pqid></control><display><type>article</type><title>Metabolism of ricinoleate by Neurospora crassa</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Goodrich-Tanrikulu, M ; Stafford, A.E ; Lin, J.T ; McKeon, T.A</creator><creatorcontrib>Goodrich-Tanrikulu, M ; Stafford, A.E ; Lin, J.T ; McKeon, T.A</creatorcontrib><description>Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 micromolar-3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/BF00166233</identifier><identifier>PMID: 8987727</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Biological and medical sciences ; Biological Sciences ; Biotechnology ; computer science ; Fatty Acids - analysis ; Fundamental and applied biological sciences. Psychology ; Glycolipids - chemistry ; information science ; libraries ; Lipids - biosynthesis ; Lipids - chemistry ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Neurospora crassa - drug effects ; Neurospora crassa - growth & development ; Neurospora crassa - metabolism ; Ricinoleic Acids - metabolism ; Ricinoleic Acids - pharmacology ; Triglycerides - analysis</subject><ispartof>Applied microbiology and biotechnology, 1996-11, Vol.46 (4), p.382-387</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-ca057de41599dc85e142541da8ba085122deccdaa724d9e81efa3e272f2300c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2504316$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8987727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goodrich-Tanrikulu, M</creatorcontrib><creatorcontrib>Stafford, A.E</creatorcontrib><creatorcontrib>Lin, J.T</creatorcontrib><creatorcontrib>McKeon, T.A</creatorcontrib><title>Metabolism of ricinoleate by Neurospora crassa</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 micromolar-3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.</description><subject>Biological and medical sciences</subject><subject>Biological Sciences</subject><subject>Biotechnology</subject><subject>computer science</subject><subject>Fatty Acids - analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycolipids - chemistry</subject><subject>information science</subject><subject>libraries</subject><subject>Lipids - biosynthesis</subject><subject>Lipids - chemistry</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Neurospora crassa - drug effects</subject><subject>Neurospora crassa - growth & development</subject><subject>Neurospora crassa - metabolism</subject><subject>Ricinoleic Acids - metabolism</subject><subject>Ricinoleic Acids - pharmacology</subject><subject>Triglycerides - analysis</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0T1Pw0AMBuATApXysbAjMiAGpJSzL_eRESoKSAUG6Bw5lwsKSppylwz99wRalZHJgx9Z9mvGzoBPgHN9czfjHJRCIfbYGBKBMVeQ7LMxBy1jLVNzyI5C-BwUGqVGbGRSozXqMZs8u47ytq5CE7Vl5CtbLdvaUeeifB29uN63YdV6iqynEOiEHZRUB3e6rcdsMbt_nz7G89eHp-ntPLYCZRdb4lIXLgGZpoU10kGCMoGCTE7cSEAsnLUFkcakSJ0BV5JwqLFEwbnl4phdbeaufPvVu9BlTRWsq2taurYPmTZKogb1LwSFWhmjB3i9gXa4KHhXZitfNeTXGfDsJ8XsL8UBn2-n9nnjih3dxjb0L7d9Cpbq0tPSVmHHUPJE_C53sWEltRl9-IEs3pCD4MMbQEghvgFfTYCW</recordid><startdate>19961101</startdate><enddate>19961101</enddate><creator>Goodrich-Tanrikulu, M</creator><creator>Stafford, A.E</creator><creator>Lin, J.T</creator><creator>McKeon, T.A</creator><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19961101</creationdate><title>Metabolism of ricinoleate by Neurospora crassa</title><author>Goodrich-Tanrikulu, M ; Stafford, A.E ; Lin, J.T ; McKeon, T.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ca057de41599dc85e142541da8ba085122deccdaa724d9e81efa3e272f2300c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biological and medical sciences</topic><topic>Biological Sciences</topic><topic>Biotechnology</topic><topic>computer science</topic><topic>Fatty Acids - analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycolipids - chemistry</topic><topic>information science</topic><topic>libraries</topic><topic>Lipids - biosynthesis</topic><topic>Lipids - chemistry</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Neurospora crassa - drug effects</topic><topic>Neurospora crassa - growth & development</topic><topic>Neurospora crassa - metabolism</topic><topic>Ricinoleic Acids - metabolism</topic><topic>Ricinoleic Acids - pharmacology</topic><topic>Triglycerides - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodrich-Tanrikulu, M</creatorcontrib><creatorcontrib>Stafford, A.E</creatorcontrib><creatorcontrib>Lin, J.T</creatorcontrib><creatorcontrib>McKeon, T.A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodrich-Tanrikulu, M</au><au>Stafford, A.E</au><au>Lin, J.T</au><au>McKeon, T.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolism of ricinoleate by Neurospora crassa</atitle><jtitle>Applied microbiology and biotechnology</jtitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>1996-11-01</date><risdate>1996</risdate><volume>46</volume><issue>4</issue><spage>382</spage><epage>387</epage><pages>382-387</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 micromolar-3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>8987727</pmid><doi>10.1007/BF00166233</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 1996-11, Vol.46 (4), p.382-387 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_78652716 |
source | MEDLINE; SpringerNature Journals |
subjects | Biological and medical sciences Biological Sciences Biotechnology computer science Fatty Acids - analysis Fundamental and applied biological sciences. Psychology Glycolipids - chemistry information science libraries Lipids - biosynthesis Lipids - chemistry Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Neurospora crassa - drug effects Neurospora crassa - growth & development Neurospora crassa - metabolism Ricinoleic Acids - metabolism Ricinoleic Acids - pharmacology Triglycerides - analysis |
title | Metabolism of ricinoleate by Neurospora crassa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolism%20of%20ricinoleate%20by%20Neurospora%20crassa&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Goodrich-Tanrikulu,%20M&rft.date=1996-11-01&rft.volume=46&rft.issue=4&rft.spage=382&rft.epage=387&rft.pages=382-387&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/BF00166233&rft_dat=%3Cproquest_cross%3E78652716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16276887&rft_id=info:pmid/8987727&rfr_iscdi=true |