Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review
In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In additi...
Gespeichert in:
Veröffentlicht in: | Gene 1996, Vol.179 (1), p.61-71 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Gene |
container_volume | 179 |
creator | Dixon, Richard A. Lamb, Chris J. Masoud, Sameer Sewalt, Vincent J.H. Paiva, Nancy L. |
description | In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the
Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In addition, the phenylpropane polymer lignin is a major structural component of secondary vascular tissue and fibers in higher plants. The recent isolation of genes encoding key enzymes of the various phenylpropanoid branch pathways opens up the possibility of engineering important crop plants such as alfalfa for: (a) improved forage digestibility, by modification of lignin composition and/or content; (b) increased or broader-spectrum disease resistance, by introducing novel phytoalexins or structural variants of the naturally occurring phytoalexins, or by modifying expression of transcriptional regulators of phytoalexin pathways; and (c) enhanced nodulation efficiency, by engineering over-production of flavonoid
nod gene inducers. The basic biochemistry and molecular biology underlying these strategies is briefly reviewed, and recent progress with transgenic plants summarized. The potential importance of metabolic compartmentation for attempts to engineer phenylpropanoid biosynthetic pathways is also discussed. Over-expression of an alfalfa glucanase-encoding gene confers significant protection against
Phytophthora in alfalfa, possibly via indirect effects on phenylpropanoid metabolism. |
doi_str_mv | 10.1016/s0378-1119(96)00327-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78610990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111996003277</els_id><sourcerecordid>78610990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-5db852a6c84740f18f8564fedb85c14393f0897a402d52bea85eddd627ad26793</originalsourceid><addsrcrecordid>eNqFUT2P1DAQtRDoWBb-ANIJVwiKgO3EsU2D0IkvaYHiuNpy4knWKLGDnRzajh9Bw9_jl-Cwqytozs14Zt7zjN9D6JySF5TQ-mUipZAFpVQ9U_VzQkomCnEHbagUqsipvIs2N5D76EFK30g-nLMzdCYV53VJNuj3J5hNEwbXYvC98wDR-f4VnmJIE7Rzwl2IuI1hwm7MxWsYwc943sew9PscAffgYc780Xg3LYOZXfA4dHjagz8MmTMZH5zFjQvp4DMjuYSNt9hCBz4BjpCmkC8J__n5C5ucXzv48RDd68yQ4NEpbtHVu7dfLz4Uuy_vP1682RUtZ2ouuG0kZ6ZuZSUq0lHZSV5XHazlllalKjsilTAVYZazBozkYK2tmTCW1UKVW_T0-G7e9PsCadajSy0Mg_EQlqSFrClRitwKpFzmSVnWLeJHYJYtpQidnqIbTTxoSvTqnb5cjdGrMVrV-p93WmTe-WnA0oxgb1gns3L_ybHfmaBNH13SV5eM0JJQzipRrpMf_4_4vFOCsJKuH319bEJWMyscdWod-Basi9lpbYO7ZcG_Fme_Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15808956</pqid></control><display><type>article</type><title>Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Dixon, Richard A. ; Lamb, Chris J. ; Masoud, Sameer ; Sewalt, Vincent J.H. ; Paiva, Nancy L.</creator><creatorcontrib>Dixon, Richard A. ; Lamb, Chris J. ; Masoud, Sameer ; Sewalt, Vincent J.H. ; Paiva, Nancy L.</creatorcontrib><description>In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the
Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In addition, the phenylpropane polymer lignin is a major structural component of secondary vascular tissue and fibers in higher plants. The recent isolation of genes encoding key enzymes of the various phenylpropanoid branch pathways opens up the possibility of engineering important crop plants such as alfalfa for: (a) improved forage digestibility, by modification of lignin composition and/or content; (b) increased or broader-spectrum disease resistance, by introducing novel phytoalexins or structural variants of the naturally occurring phytoalexins, or by modifying expression of transcriptional regulators of phytoalexin pathways; and (c) enhanced nodulation efficiency, by engineering over-production of flavonoid
nod gene inducers. The basic biochemistry and molecular biology underlying these strategies is briefly reviewed, and recent progress with transgenic plants summarized. The potential importance of metabolic compartmentation for attempts to engineer phenylpropanoid biosynthetic pathways is also discussed. Over-expression of an alfalfa glucanase-encoding gene confers significant protection against
Phytophthora in alfalfa, possibly via indirect effects on phenylpropanoid metabolism.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/s0378-1119(96)00327-7</identifier><identifier>PMID: 8955630</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Agriculture - trends ; Benzene Derivatives - metabolism ; beta-glucanase ; biosynthesis ; Biotechnology - methods ; Bradyrhizobium ; chemical constituents of plants ; CHEMICOPHYSICAL PROPERTIES ; chitinase ; defense mechanisms ; DIGESTIBILIDAD ; DIGESTIBILITE ; DIGESTIBILITY ; DISEASE RESISTANCE ; enzymes ; FITOALEXINA ; flavonoids ; Forage digestibility ; FORMATION DE NODOSITES ; gene transfer ; GENETIC ENGINEERING ; Genetic Engineering - methods ; genetic resistance ; GENIE GENETIQUE ; Glucanase ; INGENIERIA GENETICA ; isoflavonoids ; lignin ; Lignin modification ; LIGNINAS ; LIGNINE ; LIGNINS ; literature reviews ; MEDICAGO SATIVA ; Medicago sativa - genetics ; Medicago sativa - metabolism ; Metabolic compartmentation ; METABOLISM ; METABOLISME ; METABOLISMO ; NODULACION ; Nodulation ; phenolic compounds ; Phytoalexin response ; PHYTOALEXINE ; PHYTOALEXINS ; Phytophthora ; plant pathogenic fungi ; PROPIEDADES FISICO-QUIMICAS ; PROPRIETE PHYSICOCHIMIQUE ; RESISTANCE AUX MALADIES ; RESISTENCIA A LA ENFERMEDAD ; Rhizobium ; ROOT NODULATION ; structural genes ; transgenic plants</subject><ispartof>Gene, 1996, Vol.179 (1), p.61-71</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-5db852a6c84740f18f8564fedb85c14393f0897a402d52bea85eddd627ad26793</citedby><cites>FETCH-LOGICAL-c529t-5db852a6c84740f18f8564fedb85c14393f0897a402d52bea85eddd627ad26793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0378-1119(96)00327-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8955630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixon, Richard A.</creatorcontrib><creatorcontrib>Lamb, Chris J.</creatorcontrib><creatorcontrib>Masoud, Sameer</creatorcontrib><creatorcontrib>Sewalt, Vincent J.H.</creatorcontrib><creatorcontrib>Paiva, Nancy L.</creatorcontrib><title>Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review</title><title>Gene</title><addtitle>Gene</addtitle><description>In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the
Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In addition, the phenylpropane polymer lignin is a major structural component of secondary vascular tissue and fibers in higher plants. The recent isolation of genes encoding key enzymes of the various phenylpropanoid branch pathways opens up the possibility of engineering important crop plants such as alfalfa for: (a) improved forage digestibility, by modification of lignin composition and/or content; (b) increased or broader-spectrum disease resistance, by introducing novel phytoalexins or structural variants of the naturally occurring phytoalexins, or by modifying expression of transcriptional regulators of phytoalexin pathways; and (c) enhanced nodulation efficiency, by engineering over-production of flavonoid
nod gene inducers. The basic biochemistry and molecular biology underlying these strategies is briefly reviewed, and recent progress with transgenic plants summarized. The potential importance of metabolic compartmentation for attempts to engineer phenylpropanoid biosynthetic pathways is also discussed. Over-expression of an alfalfa glucanase-encoding gene confers significant protection against
Phytophthora in alfalfa, possibly via indirect effects on phenylpropanoid metabolism.</description><subject>Agriculture - trends</subject><subject>Benzene Derivatives - metabolism</subject><subject>beta-glucanase</subject><subject>biosynthesis</subject><subject>Biotechnology - methods</subject><subject>Bradyrhizobium</subject><subject>chemical constituents of plants</subject><subject>CHEMICOPHYSICAL PROPERTIES</subject><subject>chitinase</subject><subject>defense mechanisms</subject><subject>DIGESTIBILIDAD</subject><subject>DIGESTIBILITE</subject><subject>DIGESTIBILITY</subject><subject>DISEASE RESISTANCE</subject><subject>enzymes</subject><subject>FITOALEXINA</subject><subject>flavonoids</subject><subject>Forage digestibility</subject><subject>FORMATION DE NODOSITES</subject><subject>gene transfer</subject><subject>GENETIC ENGINEERING</subject><subject>Genetic Engineering - methods</subject><subject>genetic resistance</subject><subject>GENIE GENETIQUE</subject><subject>Glucanase</subject><subject>INGENIERIA GENETICA</subject><subject>isoflavonoids</subject><subject>lignin</subject><subject>Lignin modification</subject><subject>LIGNINAS</subject><subject>LIGNINE</subject><subject>LIGNINS</subject><subject>literature reviews</subject><subject>MEDICAGO SATIVA</subject><subject>Medicago sativa - genetics</subject><subject>Medicago sativa - metabolism</subject><subject>Metabolic compartmentation</subject><subject>METABOLISM</subject><subject>METABOLISME</subject><subject>METABOLISMO</subject><subject>NODULACION</subject><subject>Nodulation</subject><subject>phenolic compounds</subject><subject>Phytoalexin response</subject><subject>PHYTOALEXINE</subject><subject>PHYTOALEXINS</subject><subject>Phytophthora</subject><subject>plant pathogenic fungi</subject><subject>PROPIEDADES FISICO-QUIMICAS</subject><subject>PROPRIETE PHYSICOCHIMIQUE</subject><subject>RESISTANCE AUX MALADIES</subject><subject>RESISTENCIA A LA ENFERMEDAD</subject><subject>Rhizobium</subject><subject>ROOT NODULATION</subject><subject>structural genes</subject><subject>transgenic plants</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUT2P1DAQtRDoWBb-ANIJVwiKgO3EsU2D0IkvaYHiuNpy4knWKLGDnRzajh9Bw9_jl-Cwqytozs14Zt7zjN9D6JySF5TQ-mUipZAFpVQ9U_VzQkomCnEHbagUqsipvIs2N5D76EFK30g-nLMzdCYV53VJNuj3J5hNEwbXYvC98wDR-f4VnmJIE7Rzwl2IuI1hwm7MxWsYwc943sew9PscAffgYc780Xg3LYOZXfA4dHjagz8MmTMZH5zFjQvp4DMjuYSNt9hCBz4BjpCmkC8J__n5C5ucXzv48RDd68yQ4NEpbtHVu7dfLz4Uuy_vP1682RUtZ2ouuG0kZ6ZuZSUq0lHZSV5XHazlllalKjsilTAVYZazBozkYK2tmTCW1UKVW_T0-G7e9PsCadajSy0Mg_EQlqSFrClRitwKpFzmSVnWLeJHYJYtpQidnqIbTTxoSvTqnb5cjdGrMVrV-p93WmTe-WnA0oxgb1gns3L_ybHfmaBNH13SV5eM0JJQzipRrpMf_4_4vFOCsJKuH319bEJWMyscdWod-Basi9lpbYO7ZcG_Fme_Xg</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Dixon, Richard A.</creator><creator>Lamb, Chris J.</creator><creator>Masoud, Sameer</creator><creator>Sewalt, Vincent J.H.</creator><creator>Paiva, Nancy L.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>1996</creationdate><title>Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review</title><author>Dixon, Richard A. ; Lamb, Chris J. ; Masoud, Sameer ; Sewalt, Vincent J.H. ; Paiva, Nancy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-5db852a6c84740f18f8564fedb85c14393f0897a402d52bea85eddd627ad26793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Agriculture - trends</topic><topic>Benzene Derivatives - metabolism</topic><topic>beta-glucanase</topic><topic>biosynthesis</topic><topic>Biotechnology - methods</topic><topic>Bradyrhizobium</topic><topic>chemical constituents of plants</topic><topic>CHEMICOPHYSICAL PROPERTIES</topic><topic>chitinase</topic><topic>defense mechanisms</topic><topic>DIGESTIBILIDAD</topic><topic>DIGESTIBILITE</topic><topic>DIGESTIBILITY</topic><topic>DISEASE RESISTANCE</topic><topic>enzymes</topic><topic>FITOALEXINA</topic><topic>flavonoids</topic><topic>Forage digestibility</topic><topic>FORMATION DE NODOSITES</topic><topic>gene transfer</topic><topic>GENETIC ENGINEERING</topic><topic>Genetic Engineering - methods</topic><topic>genetic resistance</topic><topic>GENIE GENETIQUE</topic><topic>Glucanase</topic><topic>INGENIERIA GENETICA</topic><topic>isoflavonoids</topic><topic>lignin</topic><topic>Lignin modification</topic><topic>LIGNINAS</topic><topic>LIGNINE</topic><topic>LIGNINS</topic><topic>literature reviews</topic><topic>MEDICAGO SATIVA</topic><topic>Medicago sativa - genetics</topic><topic>Medicago sativa - metabolism</topic><topic>Metabolic compartmentation</topic><topic>METABOLISM</topic><topic>METABOLISME</topic><topic>METABOLISMO</topic><topic>NODULACION</topic><topic>Nodulation</topic><topic>phenolic compounds</topic><topic>Phytoalexin response</topic><topic>PHYTOALEXINE</topic><topic>PHYTOALEXINS</topic><topic>Phytophthora</topic><topic>plant pathogenic fungi</topic><topic>PROPIEDADES FISICO-QUIMICAS</topic><topic>PROPRIETE PHYSICOCHIMIQUE</topic><topic>RESISTANCE AUX MALADIES</topic><topic>RESISTENCIA A LA ENFERMEDAD</topic><topic>Rhizobium</topic><topic>ROOT NODULATION</topic><topic>structural genes</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixon, Richard A.</creatorcontrib><creatorcontrib>Lamb, Chris J.</creatorcontrib><creatorcontrib>Masoud, Sameer</creatorcontrib><creatorcontrib>Sewalt, Vincent J.H.</creatorcontrib><creatorcontrib>Paiva, Nancy L.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixon, Richard A.</au><au>Lamb, Chris J.</au><au>Masoud, Sameer</au><au>Sewalt, Vincent J.H.</au><au>Paiva, Nancy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>1996</date><risdate>1996</risdate><volume>179</volume><issue>1</issue><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the
Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In addition, the phenylpropane polymer lignin is a major structural component of secondary vascular tissue and fibers in higher plants. The recent isolation of genes encoding key enzymes of the various phenylpropanoid branch pathways opens up the possibility of engineering important crop plants such as alfalfa for: (a) improved forage digestibility, by modification of lignin composition and/or content; (b) increased or broader-spectrum disease resistance, by introducing novel phytoalexins or structural variants of the naturally occurring phytoalexins, or by modifying expression of transcriptional regulators of phytoalexin pathways; and (c) enhanced nodulation efficiency, by engineering over-production of flavonoid
nod gene inducers. The basic biochemistry and molecular biology underlying these strategies is briefly reviewed, and recent progress with transgenic plants summarized. The potential importance of metabolic compartmentation for attempts to engineer phenylpropanoid biosynthetic pathways is also discussed. Over-expression of an alfalfa glucanase-encoding gene confers significant protection against
Phytophthora in alfalfa, possibly via indirect effects on phenylpropanoid metabolism.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>8955630</pmid><doi>10.1016/s0378-1119(96)00327-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-1119 |
ispartof | Gene, 1996, Vol.179 (1), p.61-71 |
issn | 0378-1119 1879-0038 |
language | eng |
recordid | cdi_proquest_miscellaneous_78610990 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Agriculture - trends Benzene Derivatives - metabolism beta-glucanase biosynthesis Biotechnology - methods Bradyrhizobium chemical constituents of plants CHEMICOPHYSICAL PROPERTIES chitinase defense mechanisms DIGESTIBILIDAD DIGESTIBILITE DIGESTIBILITY DISEASE RESISTANCE enzymes FITOALEXINA flavonoids Forage digestibility FORMATION DE NODOSITES gene transfer GENETIC ENGINEERING Genetic Engineering - methods genetic resistance GENIE GENETIQUE Glucanase INGENIERIA GENETICA isoflavonoids lignin Lignin modification LIGNINAS LIGNINE LIGNINS literature reviews MEDICAGO SATIVA Medicago sativa - genetics Medicago sativa - metabolism Metabolic compartmentation METABOLISM METABOLISME METABOLISMO NODULACION Nodulation phenolic compounds Phytoalexin response PHYTOALEXINE PHYTOALEXINS Phytophthora plant pathogenic fungi PROPIEDADES FISICO-QUIMICAS PROPRIETE PHYSICOCHIMIQUE RESISTANCE AUX MALADIES RESISTENCIA A LA ENFERMEDAD Rhizobium ROOT NODULATION structural genes transgenic plants |
title | Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering:%20prospects%20for%20crop%20improvement%20through%20the%20genetic%20manipulation%20of%20phenylpropanoid%20biosynthesis%20and%20defense%20responses%20%E2%80%94%20a%20review&rft.jtitle=Gene&rft.au=Dixon,%20Richard%20A.&rft.date=1996&rft.volume=179&rft.issue=1&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/s0378-1119(96)00327-7&rft_dat=%3Cproquest_cross%3E78610990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15808956&rft_id=info:pmid/8955630&rft_els_id=S0378111996003277&rfr_iscdi=true |