Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review

In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In additi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene 1996, Vol.179 (1), p.61-71
Hauptverfasser: Dixon, Richard A., Lamb, Chris J., Masoud, Sameer, Sewalt, Vincent J.H., Paiva, Nancy L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1
container_start_page 61
container_title Gene
container_volume 179
creator Dixon, Richard A.
Lamb, Chris J.
Masoud, Sameer
Sewalt, Vincent J.H.
Paiva, Nancy L.
description In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In addition, the phenylpropane polymer lignin is a major structural component of secondary vascular tissue and fibers in higher plants. The recent isolation of genes encoding key enzymes of the various phenylpropanoid branch pathways opens up the possibility of engineering important crop plants such as alfalfa for: (a) improved forage digestibility, by modification of lignin composition and/or content; (b) increased or broader-spectrum disease resistance, by introducing novel phytoalexins or structural variants of the naturally occurring phytoalexins, or by modifying expression of transcriptional regulators of phytoalexin pathways; and (c) enhanced nodulation efficiency, by engineering over-production of flavonoid nod gene inducers. The basic biochemistry and molecular biology underlying these strategies is briefly reviewed, and recent progress with transgenic plants summarized. The potential importance of metabolic compartmentation for attempts to engineer phenylpropanoid biosynthetic pathways is also discussed. Over-expression of an alfalfa glucanase-encoding gene confers significant protection against Phytophthora in alfalfa, possibly via indirect effects on phenylpropanoid metabolism.
doi_str_mv 10.1016/s0378-1119(96)00327-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78610990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378111996003277</els_id><sourcerecordid>78610990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-5db852a6c84740f18f8564fedb85c14393f0897a402d52bea85eddd627ad26793</originalsourceid><addsrcrecordid>eNqFUT2P1DAQtRDoWBb-ANIJVwiKgO3EsU2D0IkvaYHiuNpy4knWKLGDnRzajh9Bw9_jl-Cwqytozs14Zt7zjN9D6JySF5TQ-mUipZAFpVQ9U_VzQkomCnEHbagUqsipvIs2N5D76EFK30g-nLMzdCYV53VJNuj3J5hNEwbXYvC98wDR-f4VnmJIE7Rzwl2IuI1hwm7MxWsYwc943sew9PscAffgYc780Xg3LYOZXfA4dHjagz8MmTMZH5zFjQvp4DMjuYSNt9hCBz4BjpCmkC8J__n5C5ucXzv48RDd68yQ4NEpbtHVu7dfLz4Uuy_vP1682RUtZ2ouuG0kZ6ZuZSUq0lHZSV5XHazlllalKjsilTAVYZazBozkYK2tmTCW1UKVW_T0-G7e9PsCadajSy0Mg_EQlqSFrClRitwKpFzmSVnWLeJHYJYtpQidnqIbTTxoSvTqnb5cjdGrMVrV-p93WmTe-WnA0oxgb1gns3L_ybHfmaBNH13SV5eM0JJQzipRrpMf_4_4vFOCsJKuH319bEJWMyscdWod-Basi9lpbYO7ZcG_Fme_Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15808956</pqid></control><display><type>article</type><title>Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Dixon, Richard A. ; Lamb, Chris J. ; Masoud, Sameer ; Sewalt, Vincent J.H. ; Paiva, Nancy L.</creator><creatorcontrib>Dixon, Richard A. ; Lamb, Chris J. ; Masoud, Sameer ; Sewalt, Vincent J.H. ; Paiva, Nancy L.</creatorcontrib><description>In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In addition, the phenylpropane polymer lignin is a major structural component of secondary vascular tissue and fibers in higher plants. The recent isolation of genes encoding key enzymes of the various phenylpropanoid branch pathways opens up the possibility of engineering important crop plants such as alfalfa for: (a) improved forage digestibility, by modification of lignin composition and/or content; (b) increased or broader-spectrum disease resistance, by introducing novel phytoalexins or structural variants of the naturally occurring phytoalexins, or by modifying expression of transcriptional regulators of phytoalexin pathways; and (c) enhanced nodulation efficiency, by engineering over-production of flavonoid nod gene inducers. The basic biochemistry and molecular biology underlying these strategies is briefly reviewed, and recent progress with transgenic plants summarized. The potential importance of metabolic compartmentation for attempts to engineer phenylpropanoid biosynthetic pathways is also discussed. Over-expression of an alfalfa glucanase-encoding gene confers significant protection against Phytophthora in alfalfa, possibly via indirect effects on phenylpropanoid metabolism.</description><identifier>ISSN: 0378-1119</identifier><identifier>EISSN: 1879-0038</identifier><identifier>DOI: 10.1016/s0378-1119(96)00327-7</identifier><identifier>PMID: 8955630</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Agriculture - trends ; Benzene Derivatives - metabolism ; beta-glucanase ; biosynthesis ; Biotechnology - methods ; Bradyrhizobium ; chemical constituents of plants ; CHEMICOPHYSICAL PROPERTIES ; chitinase ; defense mechanisms ; DIGESTIBILIDAD ; DIGESTIBILITE ; DIGESTIBILITY ; DISEASE RESISTANCE ; enzymes ; FITOALEXINA ; flavonoids ; Forage digestibility ; FORMATION DE NODOSITES ; gene transfer ; GENETIC ENGINEERING ; Genetic Engineering - methods ; genetic resistance ; GENIE GENETIQUE ; Glucanase ; INGENIERIA GENETICA ; isoflavonoids ; lignin ; Lignin modification ; LIGNINAS ; LIGNINE ; LIGNINS ; literature reviews ; MEDICAGO SATIVA ; Medicago sativa - genetics ; Medicago sativa - metabolism ; Metabolic compartmentation ; METABOLISM ; METABOLISME ; METABOLISMO ; NODULACION ; Nodulation ; phenolic compounds ; Phytoalexin response ; PHYTOALEXINE ; PHYTOALEXINS ; Phytophthora ; plant pathogenic fungi ; PROPIEDADES FISICO-QUIMICAS ; PROPRIETE PHYSICOCHIMIQUE ; RESISTANCE AUX MALADIES ; RESISTENCIA A LA ENFERMEDAD ; Rhizobium ; ROOT NODULATION ; structural genes ; transgenic plants</subject><ispartof>Gene, 1996, Vol.179 (1), p.61-71</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-5db852a6c84740f18f8564fedb85c14393f0897a402d52bea85eddd627ad26793</citedby><cites>FETCH-LOGICAL-c529t-5db852a6c84740f18f8564fedb85c14393f0897a402d52bea85eddd627ad26793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0378-1119(96)00327-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8955630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixon, Richard A.</creatorcontrib><creatorcontrib>Lamb, Chris J.</creatorcontrib><creatorcontrib>Masoud, Sameer</creatorcontrib><creatorcontrib>Sewalt, Vincent J.H.</creatorcontrib><creatorcontrib>Paiva, Nancy L.</creatorcontrib><title>Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review</title><title>Gene</title><addtitle>Gene</addtitle><description>In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In addition, the phenylpropane polymer lignin is a major structural component of secondary vascular tissue and fibers in higher plants. The recent isolation of genes encoding key enzymes of the various phenylpropanoid branch pathways opens up the possibility of engineering important crop plants such as alfalfa for: (a) improved forage digestibility, by modification of lignin composition and/or content; (b) increased or broader-spectrum disease resistance, by introducing novel phytoalexins or structural variants of the naturally occurring phytoalexins, or by modifying expression of transcriptional regulators of phytoalexin pathways; and (c) enhanced nodulation efficiency, by engineering over-production of flavonoid nod gene inducers. The basic biochemistry and molecular biology underlying these strategies is briefly reviewed, and recent progress with transgenic plants summarized. The potential importance of metabolic compartmentation for attempts to engineer phenylpropanoid biosynthetic pathways is also discussed. Over-expression of an alfalfa glucanase-encoding gene confers significant protection against Phytophthora in alfalfa, possibly via indirect effects on phenylpropanoid metabolism.</description><subject>Agriculture - trends</subject><subject>Benzene Derivatives - metabolism</subject><subject>beta-glucanase</subject><subject>biosynthesis</subject><subject>Biotechnology - methods</subject><subject>Bradyrhizobium</subject><subject>chemical constituents of plants</subject><subject>CHEMICOPHYSICAL PROPERTIES</subject><subject>chitinase</subject><subject>defense mechanisms</subject><subject>DIGESTIBILIDAD</subject><subject>DIGESTIBILITE</subject><subject>DIGESTIBILITY</subject><subject>DISEASE RESISTANCE</subject><subject>enzymes</subject><subject>FITOALEXINA</subject><subject>flavonoids</subject><subject>Forage digestibility</subject><subject>FORMATION DE NODOSITES</subject><subject>gene transfer</subject><subject>GENETIC ENGINEERING</subject><subject>Genetic Engineering - methods</subject><subject>genetic resistance</subject><subject>GENIE GENETIQUE</subject><subject>Glucanase</subject><subject>INGENIERIA GENETICA</subject><subject>isoflavonoids</subject><subject>lignin</subject><subject>Lignin modification</subject><subject>LIGNINAS</subject><subject>LIGNINE</subject><subject>LIGNINS</subject><subject>literature reviews</subject><subject>MEDICAGO SATIVA</subject><subject>Medicago sativa - genetics</subject><subject>Medicago sativa - metabolism</subject><subject>Metabolic compartmentation</subject><subject>METABOLISM</subject><subject>METABOLISME</subject><subject>METABOLISMO</subject><subject>NODULACION</subject><subject>Nodulation</subject><subject>phenolic compounds</subject><subject>Phytoalexin response</subject><subject>PHYTOALEXINE</subject><subject>PHYTOALEXINS</subject><subject>Phytophthora</subject><subject>plant pathogenic fungi</subject><subject>PROPIEDADES FISICO-QUIMICAS</subject><subject>PROPRIETE PHYSICOCHIMIQUE</subject><subject>RESISTANCE AUX MALADIES</subject><subject>RESISTENCIA A LA ENFERMEDAD</subject><subject>Rhizobium</subject><subject>ROOT NODULATION</subject><subject>structural genes</subject><subject>transgenic plants</subject><issn>0378-1119</issn><issn>1879-0038</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUT2P1DAQtRDoWBb-ANIJVwiKgO3EsU2D0IkvaYHiuNpy4knWKLGDnRzajh9Bw9_jl-Cwqytozs14Zt7zjN9D6JySF5TQ-mUipZAFpVQ9U_VzQkomCnEHbagUqsipvIs2N5D76EFK30g-nLMzdCYV53VJNuj3J5hNEwbXYvC98wDR-f4VnmJIE7Rzwl2IuI1hwm7MxWsYwc943sew9PscAffgYc780Xg3LYOZXfA4dHjagz8MmTMZH5zFjQvp4DMjuYSNt9hCBz4BjpCmkC8J__n5C5ucXzv48RDd68yQ4NEpbtHVu7dfLz4Uuy_vP1682RUtZ2ouuG0kZ6ZuZSUq0lHZSV5XHazlllalKjsilTAVYZazBozkYK2tmTCW1UKVW_T0-G7e9PsCadajSy0Mg_EQlqSFrClRitwKpFzmSVnWLeJHYJYtpQidnqIbTTxoSvTqnb5cjdGrMVrV-p93WmTe-WnA0oxgb1gns3L_ybHfmaBNH13SV5eM0JJQzipRrpMf_4_4vFOCsJKuH319bEJWMyscdWod-Basi9lpbYO7ZcG_Fme_Xg</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Dixon, Richard A.</creator><creator>Lamb, Chris J.</creator><creator>Masoud, Sameer</creator><creator>Sewalt, Vincent J.H.</creator><creator>Paiva, Nancy L.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>1996</creationdate><title>Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review</title><author>Dixon, Richard A. ; Lamb, Chris J. ; Masoud, Sameer ; Sewalt, Vincent J.H. ; Paiva, Nancy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-5db852a6c84740f18f8564fedb85c14393f0897a402d52bea85eddd627ad26793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Agriculture - trends</topic><topic>Benzene Derivatives - metabolism</topic><topic>beta-glucanase</topic><topic>biosynthesis</topic><topic>Biotechnology - methods</topic><topic>Bradyrhizobium</topic><topic>chemical constituents of plants</topic><topic>CHEMICOPHYSICAL PROPERTIES</topic><topic>chitinase</topic><topic>defense mechanisms</topic><topic>DIGESTIBILIDAD</topic><topic>DIGESTIBILITE</topic><topic>DIGESTIBILITY</topic><topic>DISEASE RESISTANCE</topic><topic>enzymes</topic><topic>FITOALEXINA</topic><topic>flavonoids</topic><topic>Forage digestibility</topic><topic>FORMATION DE NODOSITES</topic><topic>gene transfer</topic><topic>GENETIC ENGINEERING</topic><topic>Genetic Engineering - methods</topic><topic>genetic resistance</topic><topic>GENIE GENETIQUE</topic><topic>Glucanase</topic><topic>INGENIERIA GENETICA</topic><topic>isoflavonoids</topic><topic>lignin</topic><topic>Lignin modification</topic><topic>LIGNINAS</topic><topic>LIGNINE</topic><topic>LIGNINS</topic><topic>literature reviews</topic><topic>MEDICAGO SATIVA</topic><topic>Medicago sativa - genetics</topic><topic>Medicago sativa - metabolism</topic><topic>Metabolic compartmentation</topic><topic>METABOLISM</topic><topic>METABOLISME</topic><topic>METABOLISMO</topic><topic>NODULACION</topic><topic>Nodulation</topic><topic>phenolic compounds</topic><topic>Phytoalexin response</topic><topic>PHYTOALEXINE</topic><topic>PHYTOALEXINS</topic><topic>Phytophthora</topic><topic>plant pathogenic fungi</topic><topic>PROPIEDADES FISICO-QUIMICAS</topic><topic>PROPRIETE PHYSICOCHIMIQUE</topic><topic>RESISTANCE AUX MALADIES</topic><topic>RESISTENCIA A LA ENFERMEDAD</topic><topic>Rhizobium</topic><topic>ROOT NODULATION</topic><topic>structural genes</topic><topic>transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixon, Richard A.</creatorcontrib><creatorcontrib>Lamb, Chris J.</creatorcontrib><creatorcontrib>Masoud, Sameer</creatorcontrib><creatorcontrib>Sewalt, Vincent J.H.</creatorcontrib><creatorcontrib>Paiva, Nancy L.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixon, Richard A.</au><au>Lamb, Chris J.</au><au>Masoud, Sameer</au><au>Sewalt, Vincent J.H.</au><au>Paiva, Nancy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review</atitle><jtitle>Gene</jtitle><addtitle>Gene</addtitle><date>1996</date><risdate>1996</risdate><volume>179</volume><issue>1</issue><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>0378-1119</issn><eissn>1879-0038</eissn><abstract>In leguminous plants such as the forage legume alfalfa, products of the phenylpropanoid pathway of secondary metabolism are involved in interactions with beneficial microorganisms (flavonoid inducers of the Rhizobium symbiosis), and in defense against pathogens (isoflavonoid phytoalexins). In addition, the phenylpropane polymer lignin is a major structural component of secondary vascular tissue and fibers in higher plants. The recent isolation of genes encoding key enzymes of the various phenylpropanoid branch pathways opens up the possibility of engineering important crop plants such as alfalfa for: (a) improved forage digestibility, by modification of lignin composition and/or content; (b) increased or broader-spectrum disease resistance, by introducing novel phytoalexins or structural variants of the naturally occurring phytoalexins, or by modifying expression of transcriptional regulators of phytoalexin pathways; and (c) enhanced nodulation efficiency, by engineering over-production of flavonoid nod gene inducers. The basic biochemistry and molecular biology underlying these strategies is briefly reviewed, and recent progress with transgenic plants summarized. The potential importance of metabolic compartmentation for attempts to engineer phenylpropanoid biosynthetic pathways is also discussed. Over-expression of an alfalfa glucanase-encoding gene confers significant protection against Phytophthora in alfalfa, possibly via indirect effects on phenylpropanoid metabolism.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>8955630</pmid><doi>10.1016/s0378-1119(96)00327-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-1119
ispartof Gene, 1996, Vol.179 (1), p.61-71
issn 0378-1119
1879-0038
language eng
recordid cdi_proquest_miscellaneous_78610990
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Agriculture - trends
Benzene Derivatives - metabolism
beta-glucanase
biosynthesis
Biotechnology - methods
Bradyrhizobium
chemical constituents of plants
CHEMICOPHYSICAL PROPERTIES
chitinase
defense mechanisms
DIGESTIBILIDAD
DIGESTIBILITE
DIGESTIBILITY
DISEASE RESISTANCE
enzymes
FITOALEXINA
flavonoids
Forage digestibility
FORMATION DE NODOSITES
gene transfer
GENETIC ENGINEERING
Genetic Engineering - methods
genetic resistance
GENIE GENETIQUE
Glucanase
INGENIERIA GENETICA
isoflavonoids
lignin
Lignin modification
LIGNINAS
LIGNINE
LIGNINS
literature reviews
MEDICAGO SATIVA
Medicago sativa - genetics
Medicago sativa - metabolism
Metabolic compartmentation
METABOLISM
METABOLISME
METABOLISMO
NODULACION
Nodulation
phenolic compounds
Phytoalexin response
PHYTOALEXINE
PHYTOALEXINS
Phytophthora
plant pathogenic fungi
PROPIEDADES FISICO-QUIMICAS
PROPRIETE PHYSICOCHIMIQUE
RESISTANCE AUX MALADIES
RESISTENCIA A LA ENFERMEDAD
Rhizobium
ROOT NODULATION
structural genes
transgenic plants
title Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses — a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering:%20prospects%20for%20crop%20improvement%20through%20the%20genetic%20manipulation%20of%20phenylpropanoid%20biosynthesis%20and%20defense%20responses%20%E2%80%94%20a%20review&rft.jtitle=Gene&rft.au=Dixon,%20Richard%20A.&rft.date=1996&rft.volume=179&rft.issue=1&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=0378-1119&rft.eissn=1879-0038&rft_id=info:doi/10.1016/s0378-1119(96)00327-7&rft_dat=%3Cproquest_cross%3E78610990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15808956&rft_id=info:pmid/8955630&rft_els_id=S0378111996003277&rfr_iscdi=true