Functions of Ceramide in Coordinating Cellular Responses to Stress

Sphingolipid metabolites participate in key events of signal transduction and cell regulation. In the sphingomyelin cycle, a number of extracellular agents and insults (such as tumor necrosis factor, Fas ligands, and chemotherapeutic agents) cause the activation of sphingomyelinases, which act on me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1996-12, Vol.274 (5294), p.1855-1859
1. Verfasser: Hannun, Yusuf A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1859
container_issue 5294
container_start_page 1855
container_title Science (American Association for the Advancement of Science)
container_volume 274
creator Hannun, Yusuf A.
description Sphingolipid metabolites participate in key events of signal transduction and cell regulation. In the sphingomyelin cycle, a number of extracellular agents and insults (such as tumor necrosis factor, Fas ligands, and chemotherapeutic agents) cause the activation of sphingomyelinases, which act on membrane sphingomyelin and release ceramide. Multiple experimental approaches suggest an important role for ceramide in regulating such diverse responses as cell cycle arrest, apoptosis, and cell senescence. In vitro, ceramide activates a serine-threonine protein phosphatase, and in cells it regulates protein phosphorylation as well as multiple downstream targets [such as interleukin converting enzyme (ICE)-like proteases, stress-activated protein kinases, and the retinoblastoma gene product] that mediate its distinct cellular effects. This spectrum of inducers of ceramide accumulation and the nature of ceramide-mediated responses suggest that ceramide is a key component of intracellular stress response pathways.
doi_str_mv 10.1126/science.274.5294.1855
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_78582845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A18971930</galeid><jstor_id>2891685</jstor_id><sourcerecordid>A18971930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c754t-ffe85d72300d6ddb0accd8d4bbddc71d678ea3811d860c8b289ad2cc9c30ddd03</originalsourceid><addsrcrecordid>eNqN0u-L0zAYB_AiyjlP_wMPioj64jrzo2mTl3fFmwfDgae-DVnydGR0yUxa0P_elJWTyZDRF4V-Pwlpnm-WXWE0x5hUH6O24DTMSV3OGRHlHHPGnmQzjAQrBEH0aTZDiFYFRzV7nr2IcYtQygS9yC64KCnmYpbd3g1O99a7mPs2byConTWQW5c33gdjneqt26Sg64ZOhfwrxH3CEPPe5w99gBhfZs9a1UV4Nb0vs-93n741n4vlanHf3CwLXbOyL9oWODM1oQiZypg1Ulobbsr12hhdY1PVHBTlGBteIc3XhAtliNZCU2SMQfQye3fYdx_8zwFiL3c26nQw5cAPUdacccJLluD7_8OSElQSPso3_8itH4JLfyEJpozVgouErg9oozqQ1rW-D0pvwKXL6ryD1qbPN-k2ayzoeMziBE-PgZ3Vp_yHI59ID7_6jRpilPcPX86mqx9n09vFuZQvlkf0-hTVvutgAzKNu1kdcXbgOvgYA7RyH-xOhd8SIzmWWE4llqnEciyxHEuc1l1NYxnWOzCPq6bWpvztlKuoVdcG5bSNj4wwnGowbvP6wLax9-FvzAWu0vD_AFP0AGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213557989</pqid></control><display><type>article</type><title>Functions of Ceramide in Coordinating Cellular Responses to Stress</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Hannun, Yusuf A.</creator><creatorcontrib>Hannun, Yusuf A.</creatorcontrib><description>Sphingolipid metabolites participate in key events of signal transduction and cell regulation. In the sphingomyelin cycle, a number of extracellular agents and insults (such as tumor necrosis factor, Fas ligands, and chemotherapeutic agents) cause the activation of sphingomyelinases, which act on membrane sphingomyelin and release ceramide. Multiple experimental approaches suggest an important role for ceramide in regulating such diverse responses as cell cycle arrest, apoptosis, and cell senescence. In vitro, ceramide activates a serine-threonine protein phosphatase, and in cells it regulates protein phosphorylation as well as multiple downstream targets [such as interleukin converting enzyme (ICE)-like proteases, stress-activated protein kinases, and the retinoblastoma gene product] that mediate its distinct cellular effects. This spectrum of inducers of ceramide accumulation and the nature of ceramide-mediated responses suggest that ceramide is a key component of intracellular stress response pathways.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.274.5294.1855</identifier><identifier>PMID: 8943189</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Society for the Advancement of Science</publisher><subject>Amides ; Animals ; Apoptosis ; Biological and medical sciences ; Biological control systems ; Cell Cycle ; Cell cycle, cell proliferation ; Cell growth ; Cell lines ; Cell physiology ; Cell regulation ; Cellular biology ; Cellular control mechanisms ; Cellular Senescence ; Cellular signal transduction ; Ceramides ; Ceramides - metabolism ; Ceramides - physiology ; Cytology ; Enzymes ; Feedback (Response) ; Fundamental and applied biological sciences. Psychology ; Humans ; Individualized Instruction ; Kinetics ; Lipids ; Molecular and cellular biology ; Physiological aspects ; Physiological regulation ; Proteins ; Proteins - metabolism ; Signal Transduction ; Sphingolipids ; Sphingomyelins - metabolism ; Stimuli ; Stress</subject><ispartof>Science (American Association for the Advancement of Science), 1996-12, Vol.274 (5294), p.1855-1859</ispartof><rights>Copyright 1996 American Association for the Advancement of Science</rights><rights>1997 INIST-CNRS</rights><rights>COPYRIGHT 1996 American Association for the Advancement of Science</rights><rights>COPYRIGHT 1996 American Association for the Advancement of Science</rights><rights>Copyright American Association for the Advancement of Science Dec 13, 1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c754t-ffe85d72300d6ddb0accd8d4bbddc71d678ea3811d860c8b289ad2cc9c30ddd03</citedby><cites>FETCH-LOGICAL-c754t-ffe85d72300d6ddb0accd8d4bbddc71d678ea3811d860c8b289ad2cc9c30ddd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2891685$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2891685$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2518455$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8943189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannun, Yusuf A.</creatorcontrib><title>Functions of Ceramide in Coordinating Cellular Responses to Stress</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Sphingolipid metabolites participate in key events of signal transduction and cell regulation. In the sphingomyelin cycle, a number of extracellular agents and insults (such as tumor necrosis factor, Fas ligands, and chemotherapeutic agents) cause the activation of sphingomyelinases, which act on membrane sphingomyelin and release ceramide. Multiple experimental approaches suggest an important role for ceramide in regulating such diverse responses as cell cycle arrest, apoptosis, and cell senescence. In vitro, ceramide activates a serine-threonine protein phosphatase, and in cells it regulates protein phosphorylation as well as multiple downstream targets [such as interleukin converting enzyme (ICE)-like proteases, stress-activated protein kinases, and the retinoblastoma gene product] that mediate its distinct cellular effects. This spectrum of inducers of ceramide accumulation and the nature of ceramide-mediated responses suggest that ceramide is a key component of intracellular stress response pathways.</description><subject>Amides</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological and medical sciences</subject><subject>Biological control systems</subject><subject>Cell Cycle</subject><subject>Cell cycle, cell proliferation</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>Cell physiology</subject><subject>Cell regulation</subject><subject>Cellular biology</subject><subject>Cellular control mechanisms</subject><subject>Cellular Senescence</subject><subject>Cellular signal transduction</subject><subject>Ceramides</subject><subject>Ceramides - metabolism</subject><subject>Ceramides - physiology</subject><subject>Cytology</subject><subject>Enzymes</subject><subject>Feedback (Response)</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Individualized Instruction</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Molecular and cellular biology</subject><subject>Physiological aspects</subject><subject>Physiological regulation</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Sphingolipids</subject><subject>Sphingomyelins - metabolism</subject><subject>Stimuli</subject><subject>Stress</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0u-L0zAYB_AiyjlP_wMPioj64jrzo2mTl3fFmwfDgae-DVnydGR0yUxa0P_elJWTyZDRF4V-Pwlpnm-WXWE0x5hUH6O24DTMSV3OGRHlHHPGnmQzjAQrBEH0aTZDiFYFRzV7nr2IcYtQygS9yC64KCnmYpbd3g1O99a7mPs2byConTWQW5c33gdjneqt26Sg64ZOhfwrxH3CEPPe5w99gBhfZs9a1UV4Nb0vs-93n741n4vlanHf3CwLXbOyL9oWODM1oQiZypg1Ulobbsr12hhdY1PVHBTlGBteIc3XhAtliNZCU2SMQfQye3fYdx_8zwFiL3c26nQw5cAPUdacccJLluD7_8OSElQSPso3_8itH4JLfyEJpozVgouErg9oozqQ1rW-D0pvwKXL6ryD1qbPN-k2ayzoeMziBE-PgZ3Vp_yHI59ID7_6jRpilPcPX86mqx9n09vFuZQvlkf0-hTVvutgAzKNu1kdcXbgOvgYA7RyH-xOhd8SIzmWWE4llqnEciyxHEuc1l1NYxnWOzCPq6bWpvztlKuoVdcG5bSNj4wwnGowbvP6wLax9-FvzAWu0vD_AFP0AGA</recordid><startdate>19961213</startdate><enddate>19961213</enddate><creator>Hannun, Yusuf A.</creator><general>American Society for the Advancement of Science</general><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>IBG</scope><scope>IOV</scope><scope>ISN</scope><scope>0-V</scope><scope>3V.</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88B</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9-</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0K</scope><scope>M0P</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19961213</creationdate><title>Functions of Ceramide in Coordinating Cellular Responses to Stress</title><author>Hannun, Yusuf A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c754t-ffe85d72300d6ddb0accd8d4bbddc71d678ea3811d860c8b289ad2cc9c30ddd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Amides</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological and medical sciences</topic><topic>Biological control systems</topic><topic>Cell Cycle</topic><topic>Cell cycle, cell proliferation</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>Cell physiology</topic><topic>Cell regulation</topic><topic>Cellular biology</topic><topic>Cellular control mechanisms</topic><topic>Cellular Senescence</topic><topic>Cellular signal transduction</topic><topic>Ceramides</topic><topic>Ceramides - metabolism</topic><topic>Ceramides - physiology</topic><topic>Cytology</topic><topic>Enzymes</topic><topic>Feedback (Response)</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Individualized Instruction</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Molecular and cellular biology</topic><topic>Physiological aspects</topic><topic>Physiological regulation</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Sphingolipids</topic><topic>Sphingomyelins - metabolism</topic><topic>Stimuli</topic><topic>Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannun, Yusuf A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Biography</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Agricultural Science Database</collection><collection>Education Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannun, Yusuf A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functions of Ceramide in Coordinating Cellular Responses to Stress</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1996-12-13</date><risdate>1996</risdate><volume>274</volume><issue>5294</issue><spage>1855</spage><epage>1859</epage><pages>1855-1859</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Sphingolipid metabolites participate in key events of signal transduction and cell regulation. In the sphingomyelin cycle, a number of extracellular agents and insults (such as tumor necrosis factor, Fas ligands, and chemotherapeutic agents) cause the activation of sphingomyelinases, which act on membrane sphingomyelin and release ceramide. Multiple experimental approaches suggest an important role for ceramide in regulating such diverse responses as cell cycle arrest, apoptosis, and cell senescence. In vitro, ceramide activates a serine-threonine protein phosphatase, and in cells it regulates protein phosphorylation as well as multiple downstream targets [such as interleukin converting enzyme (ICE)-like proteases, stress-activated protein kinases, and the retinoblastoma gene product] that mediate its distinct cellular effects. This spectrum of inducers of ceramide accumulation and the nature of ceramide-mediated responses suggest that ceramide is a key component of intracellular stress response pathways.</abstract><cop>Washington, DC</cop><pub>American Society for the Advancement of Science</pub><pmid>8943189</pmid><doi>10.1126/science.274.5294.1855</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1996-12, Vol.274 (5294), p.1855-1859
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_78582845
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Amides
Animals
Apoptosis
Biological and medical sciences
Biological control systems
Cell Cycle
Cell cycle, cell proliferation
Cell growth
Cell lines
Cell physiology
Cell regulation
Cellular biology
Cellular control mechanisms
Cellular Senescence
Cellular signal transduction
Ceramides
Ceramides - metabolism
Ceramides - physiology
Cytology
Enzymes
Feedback (Response)
Fundamental and applied biological sciences. Psychology
Humans
Individualized Instruction
Kinetics
Lipids
Molecular and cellular biology
Physiological aspects
Physiological regulation
Proteins
Proteins - metabolism
Signal Transduction
Sphingolipids
Sphingomyelins - metabolism
Stimuli
Stress
title Functions of Ceramide in Coordinating Cellular Responses to Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functions%20of%20Ceramide%20in%20Coordinating%20Cellular%20Responses%20to%20Stress&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Hannun,%20Yusuf%20A.&rft.date=1996-12-13&rft.volume=274&rft.issue=5294&rft.spage=1855&rft.epage=1859&rft.pages=1855-1859&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.274.5294.1855&rft_dat=%3Cgale_proqu%3EA18971930%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213557989&rft_id=info:pmid/8943189&rft_galeid=A18971930&rft_jstor_id=2891685&rfr_iscdi=true