A second transport ATPase gene in Saccharomyces cerevisiae
A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1988-12, Vol.263 (36), p.19480-19487 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19487 |
---|---|
container_issue | 36 |
container_start_page | 19480 |
container_title | The Journal of biological chemistry |
container_volume | 263 |
creator | Schlesser, A Ulaszewski, S Ghislain, M Goffeau, A |
description | A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents. |
doi_str_mv | 10.1016/S0021-9258(19)77659-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78576286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819776595</els_id><sourcerecordid>78576286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-1ca4b98c54c4b658967b7fe1bd6830821be1f42f466866fc9a03d10b1bcf19753</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpSR23f6AQ2EMp6WFbzeq7l2JCvyDQghPoTWhnZ20V764jrVPy77uOjXuMLjq8j94ZPYxdAP8AHPTHJecVlK5S9hLce2O0cqV6xmbArSiFgt_P2eyEvGTnOf_h05EOzthZ5biUwszYp0WRCYe-KcYU-rwd0lgsbn6FTMWKeipiXywD4jqkoXtAygVSovuYY6BX7EUbNpleH-85u_365ebqe3n989uPq8V1icrCWAIGWTuLSqKstbJOm9q0BHWjreC2gpqglVUrtbZat-gCFw3wGmpswRkl5uzdoXebhrsd5dF3MSNtNqGnYZe9scroyuonQVDcgJv0zJk6gJiGnBO1fptiF9KDB-73cv2jXL8358H5R7l-v8nFccCu7qg5vTranPK3xzxkDJt2MooxnzAjOBfS_sfWcbX-GxP5Og64ps5XWnihp5HS8gl7c8DaMPiwSlPT7dI6XlV2v8rnQ0iT-ftIyWeM1CM1Ux-OvhniE5_5B2psqCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15071908</pqid></control><display><type>article</type><title>A second transport ATPase gene in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Schlesser, A ; Ulaszewski, S ; Ghislain, M ; Goffeau, A</creator><creatorcontrib>Schlesser, A ; Ulaszewski, S ; Ghislain, M ; Goffeau, A</creatorcontrib><description>A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(19)77659-5</identifier><identifier>PMID: 2904437</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>ACIDE AMINE ; Amino Acid Sequence ; AMINO ACIDS ; AMINOACIDOS ; Analytical, structural and metabolic biochemistry ; Base Sequence ; Biological and medical sciences ; Biotechnology ; Blotting, Northern ; Blotting, Southern ; CHROMOSOME NUMBER ; DNA Transposable Elements ; Enzymes and enzyme inhibitors ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; GENE ; GENES ; Genes, Fungal ; Genetic engineering ; Genetic technics ; HIBRIDACION ; HIDROLASAS ; HYBRIDATION ; HYBRIDIZING ; HYDROLASE ; HYDROLASES ; Methods. Procedures. Technologies ; Molecular Sequence Data ; Multigene Family ; NOMBRE CHROMOSOMIQUE ; NUMERO DE CROMOSOMAS ; Proton-Translocating ATPases - genetics ; Restriction Mapping ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Synthetic digonucleotides and genes. Sequencing</subject><ispartof>The Journal of biological chemistry, 1988-12, Vol.263 (36), p.19480-19487</ispartof><rights>1988 © 1988 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-1ca4b98c54c4b658967b7fe1bd6830821be1f42f466866fc9a03d10b1bcf19753</citedby><cites>FETCH-LOGICAL-c581t-1ca4b98c54c4b658967b7fe1bd6830821be1f42f466866fc9a03d10b1bcf19753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7300348$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2904437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlesser, A</creatorcontrib><creatorcontrib>Ulaszewski, S</creatorcontrib><creatorcontrib>Ghislain, M</creatorcontrib><creatorcontrib>Goffeau, A</creatorcontrib><title>A second transport ATPase gene in Saccharomyces cerevisiae</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents.</description><subject>ACIDE AMINE</subject><subject>Amino Acid Sequence</subject><subject>AMINO ACIDS</subject><subject>AMINOACIDOS</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Blotting, Northern</subject><subject>Blotting, Southern</subject><subject>CHROMOSOME NUMBER</subject><subject>DNA Transposable Elements</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes, Fungal</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>HIBRIDACION</subject><subject>HIDROLASAS</subject><subject>HYBRIDATION</subject><subject>HYBRIDIZING</subject><subject>HYDROLASE</subject><subject>HYDROLASES</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>NOMBRE CHROMOSOMIQUE</subject><subject>NUMERO DE CROMOSOMAS</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Restriction Mapping</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Synthetic digonucleotides and genes. Sequencing</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rGzEQhkVpSR23f6AQ2EMp6WFbzeq7l2JCvyDQghPoTWhnZ20V764jrVPy77uOjXuMLjq8j94ZPYxdAP8AHPTHJecVlK5S9hLce2O0cqV6xmbArSiFgt_P2eyEvGTnOf_h05EOzthZ5biUwszYp0WRCYe-KcYU-rwd0lgsbn6FTMWKeipiXywD4jqkoXtAygVSovuYY6BX7EUbNpleH-85u_365ebqe3n989uPq8V1icrCWAIGWTuLSqKstbJOm9q0BHWjreC2gpqglVUrtbZat-gCFw3wGmpswRkl5uzdoXebhrsd5dF3MSNtNqGnYZe9scroyuonQVDcgJv0zJk6gJiGnBO1fptiF9KDB-73cv2jXL8358H5R7l-v8nFccCu7qg5vTranPK3xzxkDJt2MooxnzAjOBfS_sfWcbX-GxP5Og64ps5XWnihp5HS8gl7c8DaMPiwSlPT7dI6XlV2v8rnQ0iT-ftIyWeM1CM1Ux-OvhniE5_5B2psqCg</recordid><startdate>19881225</startdate><enddate>19881225</enddate><creator>Schlesser, A</creator><creator>Ulaszewski, S</creator><creator>Ghislain, M</creator><creator>Goffeau, A</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19881225</creationdate><title>A second transport ATPase gene in Saccharomyces cerevisiae</title><author>Schlesser, A ; Ulaszewski, S ; Ghislain, M ; Goffeau, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-1ca4b98c54c4b658967b7fe1bd6830821be1f42f466866fc9a03d10b1bcf19753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>ACIDE AMINE</topic><topic>Amino Acid Sequence</topic><topic>AMINO ACIDS</topic><topic>AMINOACIDOS</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Blotting, Northern</topic><topic>Blotting, Southern</topic><topic>CHROMOSOME NUMBER</topic><topic>DNA Transposable Elements</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes, Fungal</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>HIBRIDACION</topic><topic>HIDROLASAS</topic><topic>HYBRIDATION</topic><topic>HYBRIDIZING</topic><topic>HYDROLASE</topic><topic>HYDROLASES</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>NOMBRE CHROMOSOMIQUE</topic><topic>NUMERO DE CROMOSOMAS</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Restriction Mapping</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Synthetic digonucleotides and genes. Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlesser, A</creatorcontrib><creatorcontrib>Ulaszewski, S</creatorcontrib><creatorcontrib>Ghislain, M</creatorcontrib><creatorcontrib>Goffeau, A</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlesser, A</au><au>Ulaszewski, S</au><au>Ghislain, M</au><au>Goffeau, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second transport ATPase gene in Saccharomyces cerevisiae</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1988-12-25</date><risdate>1988</risdate><volume>263</volume><issue>36</issue><spage>19480</spage><epage>19487</epage><pages>19480-19487</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>2904437</pmid><doi>10.1016/S0021-9258(19)77659-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1988-12, Vol.263 (36), p.19480-19487 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_78576286 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | ACIDE AMINE Amino Acid Sequence AMINO ACIDS AMINOACIDOS Analytical, structural and metabolic biochemistry Base Sequence Biological and medical sciences Biotechnology Blotting, Northern Blotting, Southern CHROMOSOME NUMBER DNA Transposable Elements Enzymes and enzyme inhibitors Escherichia coli - genetics Fundamental and applied biological sciences. Psychology GENE GENES Genes, Fungal Genetic engineering Genetic technics HIBRIDACION HIDROLASAS HYBRIDATION HYBRIDIZING HYDROLASE HYDROLASES Methods. Procedures. Technologies Molecular Sequence Data Multigene Family NOMBRE CHROMOSOMIQUE NUMERO DE CROMOSOMAS Proton-Translocating ATPases - genetics Restriction Mapping SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Synthetic digonucleotides and genes. Sequencing |
title | A second transport ATPase gene in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second%20transport%20ATPase%20gene%20in%20Saccharomyces%20cerevisiae&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Schlesser,%20A&rft.date=1988-12-25&rft.volume=263&rft.issue=36&rft.spage=19480&rft.epage=19487&rft.pages=19480-19487&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(19)77659-5&rft_dat=%3Cproquest_cross%3E78576286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15071908&rft_id=info:pmid/2904437&rft_els_id=S0021925819776595&rfr_iscdi=true |