A second transport ATPase gene in Saccharomyces cerevisiae

A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1988-12, Vol.263 (36), p.19480-19487
Hauptverfasser: Schlesser, A, Ulaszewski, S, Ghislain, M, Goffeau, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19487
container_issue 36
container_start_page 19480
container_title The Journal of biological chemistry
container_volume 263
creator Schlesser, A
Ulaszewski, S
Ghislain, M
Goffeau, A
description A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents.
doi_str_mv 10.1016/S0021-9258(19)77659-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78576286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819776595</els_id><sourcerecordid>78576286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-1ca4b98c54c4b658967b7fe1bd6830821be1f42f466866fc9a03d10b1bcf19753</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVpSR23f6AQ2EMp6WFbzeq7l2JCvyDQghPoTWhnZ20V764jrVPy77uOjXuMLjq8j94ZPYxdAP8AHPTHJecVlK5S9hLce2O0cqV6xmbArSiFgt_P2eyEvGTnOf_h05EOzthZ5biUwszYp0WRCYe-KcYU-rwd0lgsbn6FTMWKeipiXywD4jqkoXtAygVSovuYY6BX7EUbNpleH-85u_365ebqe3n989uPq8V1icrCWAIGWTuLSqKstbJOm9q0BHWjreC2gpqglVUrtbZat-gCFw3wGmpswRkl5uzdoXebhrsd5dF3MSNtNqGnYZe9scroyuonQVDcgJv0zJk6gJiGnBO1fptiF9KDB-73cv2jXL8358H5R7l-v8nFccCu7qg5vTranPK3xzxkDJt2MooxnzAjOBfS_sfWcbX-GxP5Og64ps5XWnihp5HS8gl7c8DaMPiwSlPT7dI6XlV2v8rnQ0iT-ftIyWeM1CM1Ux-OvhniE5_5B2psqCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15071908</pqid></control><display><type>article</type><title>A second transport ATPase gene in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Schlesser, A ; Ulaszewski, S ; Ghislain, M ; Goffeau, A</creator><creatorcontrib>Schlesser, A ; Ulaszewski, S ; Ghislain, M ; Goffeau, A</creatorcontrib><description>A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(19)77659-5</identifier><identifier>PMID: 2904437</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>ACIDE AMINE ; Amino Acid Sequence ; AMINO ACIDS ; AMINOACIDOS ; Analytical, structural and metabolic biochemistry ; Base Sequence ; Biological and medical sciences ; Biotechnology ; Blotting, Northern ; Blotting, Southern ; CHROMOSOME NUMBER ; DNA Transposable Elements ; Enzymes and enzyme inhibitors ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; GENE ; GENES ; Genes, Fungal ; Genetic engineering ; Genetic technics ; HIBRIDACION ; HIDROLASAS ; HYBRIDATION ; HYBRIDIZING ; HYDROLASE ; HYDROLASES ; Methods. Procedures. Technologies ; Molecular Sequence Data ; Multigene Family ; NOMBRE CHROMOSOMIQUE ; NUMERO DE CROMOSOMAS ; Proton-Translocating ATPases - genetics ; Restriction Mapping ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Synthetic digonucleotides and genes. Sequencing</subject><ispartof>The Journal of biological chemistry, 1988-12, Vol.263 (36), p.19480-19487</ispartof><rights>1988 © 1988 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-1ca4b98c54c4b658967b7fe1bd6830821be1f42f466866fc9a03d10b1bcf19753</citedby><cites>FETCH-LOGICAL-c581t-1ca4b98c54c4b658967b7fe1bd6830821be1f42f466866fc9a03d10b1bcf19753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7300348$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2904437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schlesser, A</creatorcontrib><creatorcontrib>Ulaszewski, S</creatorcontrib><creatorcontrib>Ghislain, M</creatorcontrib><creatorcontrib>Goffeau, A</creatorcontrib><title>A second transport ATPase gene in Saccharomyces cerevisiae</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents.</description><subject>ACIDE AMINE</subject><subject>Amino Acid Sequence</subject><subject>AMINO ACIDS</subject><subject>AMINOACIDOS</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Blotting, Northern</subject><subject>Blotting, Southern</subject><subject>CHROMOSOME NUMBER</subject><subject>DNA Transposable Elements</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes, Fungal</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>HIBRIDACION</subject><subject>HIDROLASAS</subject><subject>HYBRIDATION</subject><subject>HYBRIDIZING</subject><subject>HYDROLASE</subject><subject>HYDROLASES</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>NOMBRE CHROMOSOMIQUE</subject><subject>NUMERO DE CROMOSOMAS</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Restriction Mapping</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Synthetic digonucleotides and genes. Sequencing</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rGzEQhkVpSR23f6AQ2EMp6WFbzeq7l2JCvyDQghPoTWhnZ20V764jrVPy77uOjXuMLjq8j94ZPYxdAP8AHPTHJecVlK5S9hLce2O0cqV6xmbArSiFgt_P2eyEvGTnOf_h05EOzthZ5biUwszYp0WRCYe-KcYU-rwd0lgsbn6FTMWKeipiXywD4jqkoXtAygVSovuYY6BX7EUbNpleH-85u_365ebqe3n989uPq8V1icrCWAIGWTuLSqKstbJOm9q0BHWjreC2gpqglVUrtbZat-gCFw3wGmpswRkl5uzdoXebhrsd5dF3MSNtNqGnYZe9scroyuonQVDcgJv0zJk6gJiGnBO1fptiF9KDB-73cv2jXL8358H5R7l-v8nFccCu7qg5vTranPK3xzxkDJt2MooxnzAjOBfS_sfWcbX-GxP5Og64ps5XWnihp5HS8gl7c8DaMPiwSlPT7dI6XlV2v8rnQ0iT-ftIyWeM1CM1Ux-OvhniE5_5B2psqCg</recordid><startdate>19881225</startdate><enddate>19881225</enddate><creator>Schlesser, A</creator><creator>Ulaszewski, S</creator><creator>Ghislain, M</creator><creator>Goffeau, A</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19881225</creationdate><title>A second transport ATPase gene in Saccharomyces cerevisiae</title><author>Schlesser, A ; Ulaszewski, S ; Ghislain, M ; Goffeau, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-1ca4b98c54c4b658967b7fe1bd6830821be1f42f466866fc9a03d10b1bcf19753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>ACIDE AMINE</topic><topic>Amino Acid Sequence</topic><topic>AMINO ACIDS</topic><topic>AMINOACIDOS</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Blotting, Northern</topic><topic>Blotting, Southern</topic><topic>CHROMOSOME NUMBER</topic><topic>DNA Transposable Elements</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes, Fungal</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>HIBRIDACION</topic><topic>HIDROLASAS</topic><topic>HYBRIDATION</topic><topic>HYBRIDIZING</topic><topic>HYDROLASE</topic><topic>HYDROLASES</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>NOMBRE CHROMOSOMIQUE</topic><topic>NUMERO DE CROMOSOMAS</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Restriction Mapping</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Synthetic digonucleotides and genes. Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlesser, A</creatorcontrib><creatorcontrib>Ulaszewski, S</creatorcontrib><creatorcontrib>Ghislain, M</creatorcontrib><creatorcontrib>Goffeau, A</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlesser, A</au><au>Ulaszewski, S</au><au>Ghislain, M</au><au>Goffeau, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second transport ATPase gene in Saccharomyces cerevisiae</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1988-12-25</date><risdate>1988</risdate><volume>263</volume><issue>36</issue><spage>19480</spage><epage>19487</epage><pages>19480-19487</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>A second transport ATPase gene from Saccharomyces cerevisiae has been identified by hybridization to a PMA1 probe and sequenced. The gene called PMA2 encodes a polypeptide of Mr = 102,157, which, with the exception of the 144 amino-terminal residues, is highly homologous to the structural gene PMA1 for the H+-ATPase. It is localized on the chromosome XVI at 16.7 centimorgan from gal4 and is not essential for haploid growth. Comparison between the upstream, noncoding DNA regions of PMA1 and PMA2 indicates that the two genes are controlled differently. The extensive amino acid sequence homology with the fungal H+-ATPases described so far indicates that the PMA2-encoded protein is also able to function as a H+ pump. This is supported by the observation that in pma1 mutants with reduced plasma membrane ATPase activity, disruption of the PMA2 gene confers the ability to grow under alkaline pH conditions. Slower development of diploids is also observed on normal minimal medium after bilateral disruption of PMA2 in the two parents.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>2904437</pmid><doi>10.1016/S0021-9258(19)77659-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1988-12, Vol.263 (36), p.19480-19487
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_78576286
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects ACIDE AMINE
Amino Acid Sequence
AMINO ACIDS
AMINOACIDOS
Analytical, structural and metabolic biochemistry
Base Sequence
Biological and medical sciences
Biotechnology
Blotting, Northern
Blotting, Southern
CHROMOSOME NUMBER
DNA Transposable Elements
Enzymes and enzyme inhibitors
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
GENE
GENES
Genes, Fungal
Genetic engineering
Genetic technics
HIBRIDACION
HIDROLASAS
HYBRIDATION
HYBRIDIZING
HYDROLASE
HYDROLASES
Methods. Procedures. Technologies
Molecular Sequence Data
Multigene Family
NOMBRE CHROMOSOMIQUE
NUMERO DE CROMOSOMAS
Proton-Translocating ATPases - genetics
Restriction Mapping
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Synthetic digonucleotides and genes. Sequencing
title A second transport ATPase gene in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second%20transport%20ATPase%20gene%20in%20Saccharomyces%20cerevisiae&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Schlesser,%20A&rft.date=1988-12-25&rft.volume=263&rft.issue=36&rft.spage=19480&rft.epage=19487&rft.pages=19480-19487&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(19)77659-5&rft_dat=%3Cproquest_cross%3E78576286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15071908&rft_id=info:pmid/2904437&rft_els_id=S0021925819776595&rfr_iscdi=true