Structure and organization of Marchantia polymorpha chloroplast genome : I. Cloning and gene identification
We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IR A and IR B, each 10,058 base-pairs), a large...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1988-09, Vol.203 (2), p.281-298 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 2 |
container_start_page | 281 |
container_title | Journal of molecular biology |
container_volume | 203 |
creator | Ohyama, Kanji Fukuzawa, Hideya Kohchi, Takayuki Sano, Tohru Sano, Satoshi Shirai, Hiromasa Umesono, Kazuhiko Shiki, Yasuhiko Takeuchi, Masayuki Aota, Zhen Chang Shin-ichi Inokuchi, Hachiro Ozeki, Haruo |
description | We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort,
Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IR
A and IR
B, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes, 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORPs) show structural similarities to
Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is
trans-split on the opposite DNA strand. The universal genetic code was confirmed by the substitution pattern of simultaneous codons, and by possible codon recognition of the chloroplast-encoded tRNA molecules, assuming no importation of tRNA molecules from the cytoplasm. The nucleotide residue A or T is preferred at the third position of the codons (G + C, 11.9%) and in intergenic spacers (G + C, 19.5%), resulting in an overall G + C content that is low (28.8%) throughout the liverwort chloroplast genome. Possible gene expression si |
doi_str_mv | 10.1016/0022-2836(88)90001-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_78569503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022283688900010</els_id><sourcerecordid>78569503</sourcerecordid><originalsourceid>FETCH-LOGICAL-e231t-3f8c84aef9e30290d21225e63d9b16aaade914a1f9d2ab8ca07080b571581b353</originalsourceid><addsrcrecordid>eNo90ctu1DAUBmALgcq08AYgvEAVLFKO7SRjs0BCIy6ViliUrq0T52TGkMSpnSCVp8dzUVeWfD7_lv0z9krAlQBRfwCQspBa1e-0fm8AQBTwhK0EaFPoWumnbPVInrPzlH5nU6lSn7EzWdYSqnLF_tzOcXHzEonj2PIQtzj6fzj7MPLQ8R8Y3Q7H2SOfQv8whDjtkLtdH2KYekwz39IYBuIf-fUV3_Rh9OP2kJT3ifuW8tnOu0PgC_aswz7Ry9N6we6-fvm1-V7c_Px2vfl8U5BUYi5Up50ukTpDCqSBVgopK6pVaxpRI2JLRpQoOtNKbLRDWIOGplqLSotGVeqCXR5zpxjuF0qzHXxy1Pc4UliSXeuqNhWoDF-f4NIM1Nop-gHjgz39Tp6_Pc0xOey7iKPz6ZHVZi3y3Zm9ObIOg8VtzOTuVoJQIEoByogsPh0F5Wf_9RRtcp5GR62P5GbbBm8F2H2tdt-Z3XdmtbaHWi2o_2wMkbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78569503</pqid></control><display><type>article</type><title>Structure and organization of Marchantia polymorpha chloroplast genome : I. Cloning and gene identification</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ohyama, Kanji ; Fukuzawa, Hideya ; Kohchi, Takayuki ; Sano, Tohru ; Sano, Satoshi ; Shirai, Hiromasa ; Umesono, Kazuhiko ; Shiki, Yasuhiko ; Takeuchi, Masayuki ; Aota, Zhen Chang Shin-ichi ; Inokuchi, Hachiro ; Ozeki, Haruo</creator><creatorcontrib>Ohyama, Kanji ; Fukuzawa, Hideya ; Kohchi, Takayuki ; Sano, Tohru ; Sano, Satoshi ; Shirai, Hiromasa ; Umesono, Kazuhiko ; Shiki, Yasuhiko ; Takeuchi, Masayuki ; Aota, Zhen Chang Shin-ichi ; Inokuchi, Hachiro ; Ozeki, Haruo</creatorcontrib><description>We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort,
Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IR
A and IR
B, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes, 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORPs) show structural similarities to
Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is
trans-split on the opposite DNA strand. The universal genetic code was confirmed by the substitution pattern of simultaneous codons, and by possible codon recognition of the chloroplast-encoded tRNA molecules, assuming no importation of tRNA molecules from the cytoplasm. The nucleotide residue A or T is preferred at the third position of the codons (G + C, 11.9%) and in intergenic spacers (G + C, 19.5%), resulting in an overall G + C content that is low (28.8%) throughout the liverwort chloroplast genome. Possible gene expression signals such as promoters and terminators for transcription, predicted locations of gene products, and DNA replicative origins are discussed.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/0022-2836(88)90001-0</identifier><identifier>PMID: 2462054</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Base Sequence ; Biological and medical sciences ; Biotechnology ; Cells, Cultured ; chloroplast DNA ; Chloroplasts ; Chromosome Mapping ; cloning ; Cloning, Molecular ; DNA - genetics ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetic engineering ; Genetic technics ; genomics ; Marchantia polymorpha ; Methods. Procedures. Technologies ; Molecular cloning ; Molecular Sequence Data ; nucleotide sequences ; Plants - genetics ; Ribosomal Proteins - genetics ; RNA - genetics ; structure</subject><ispartof>Journal of molecular biology, 1988-09, Vol.203 (2), p.281-298</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0022283688900010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6971070$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2462054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohyama, Kanji</creatorcontrib><creatorcontrib>Fukuzawa, Hideya</creatorcontrib><creatorcontrib>Kohchi, Takayuki</creatorcontrib><creatorcontrib>Sano, Tohru</creatorcontrib><creatorcontrib>Sano, Satoshi</creatorcontrib><creatorcontrib>Shirai, Hiromasa</creatorcontrib><creatorcontrib>Umesono, Kazuhiko</creatorcontrib><creatorcontrib>Shiki, Yasuhiko</creatorcontrib><creatorcontrib>Takeuchi, Masayuki</creatorcontrib><creatorcontrib>Aota, Zhen Chang Shin-ichi</creatorcontrib><creatorcontrib>Inokuchi, Hachiro</creatorcontrib><creatorcontrib>Ozeki, Haruo</creatorcontrib><title>Structure and organization of Marchantia polymorpha chloroplast genome : I. Cloning and gene identification</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort,
Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IR
A and IR
B, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes, 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORPs) show structural similarities to
Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is
trans-split on the opposite DNA strand. The universal genetic code was confirmed by the substitution pattern of simultaneous codons, and by possible codon recognition of the chloroplast-encoded tRNA molecules, assuming no importation of tRNA molecules from the cytoplasm. The nucleotide residue A or T is preferred at the third position of the codons (G + C, 11.9%) and in intergenic spacers (G + C, 19.5%), resulting in an overall G + C content that is low (28.8%) throughout the liverwort chloroplast genome. Possible gene expression signals such as promoters and terminators for transcription, predicted locations of gene products, and DNA replicative origins are discussed.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cells, Cultured</subject><subject>chloroplast DNA</subject><subject>Chloroplasts</subject><subject>Chromosome Mapping</subject><subject>cloning</subject><subject>Cloning, Molecular</subject><subject>DNA - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>genomics</subject><subject>Marchantia polymorpha</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular cloning</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Plants - genetics</subject><subject>Ribosomal Proteins - genetics</subject><subject>RNA - genetics</subject><subject>structure</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo90ctu1DAUBmALgcq08AYgvEAVLFKO7SRjs0BCIy6ViliUrq0T52TGkMSpnSCVp8dzUVeWfD7_lv0z9krAlQBRfwCQspBa1e-0fm8AQBTwhK0EaFPoWumnbPVInrPzlH5nU6lSn7EzWdYSqnLF_tzOcXHzEonj2PIQtzj6fzj7MPLQ8R8Y3Q7H2SOfQv8whDjtkLtdH2KYekwz39IYBuIf-fUV3_Rh9OP2kJT3ifuW8tnOu0PgC_aswz7Ry9N6we6-fvm1-V7c_Px2vfl8U5BUYi5Up50ukTpDCqSBVgopK6pVaxpRI2JLRpQoOtNKbLRDWIOGplqLSotGVeqCXR5zpxjuF0qzHXxy1Pc4UliSXeuqNhWoDF-f4NIM1Nop-gHjgz39Tp6_Pc0xOey7iKPz6ZHVZi3y3Zm9ObIOg8VtzOTuVoJQIEoByogsPh0F5Wf_9RRtcp5GR62P5GbbBm8F2H2tdt-Z3XdmtbaHWi2o_2wMkbI</recordid><startdate>19880920</startdate><enddate>19880920</enddate><creator>Ohyama, Kanji</creator><creator>Fukuzawa, Hideya</creator><creator>Kohchi, Takayuki</creator><creator>Sano, Tohru</creator><creator>Sano, Satoshi</creator><creator>Shirai, Hiromasa</creator><creator>Umesono, Kazuhiko</creator><creator>Shiki, Yasuhiko</creator><creator>Takeuchi, Masayuki</creator><creator>Aota, Zhen Chang Shin-ichi</creator><creator>Inokuchi, Hachiro</creator><creator>Ozeki, Haruo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>19880920</creationdate><title>Structure and organization of Marchantia polymorpha chloroplast genome : I. Cloning and gene identification</title><author>Ohyama, Kanji ; Fukuzawa, Hideya ; Kohchi, Takayuki ; Sano, Tohru ; Sano, Satoshi ; Shirai, Hiromasa ; Umesono, Kazuhiko ; Shiki, Yasuhiko ; Takeuchi, Masayuki ; Aota, Zhen Chang Shin-ichi ; Inokuchi, Hachiro ; Ozeki, Haruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e231t-3f8c84aef9e30290d21225e63d9b16aaade914a1f9d2ab8ca07080b571581b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cells, Cultured</topic><topic>chloroplast DNA</topic><topic>Chloroplasts</topic><topic>Chromosome Mapping</topic><topic>cloning</topic><topic>Cloning, Molecular</topic><topic>DNA - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>genomics</topic><topic>Marchantia polymorpha</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular cloning</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Plants - genetics</topic><topic>Ribosomal Proteins - genetics</topic><topic>RNA - genetics</topic><topic>structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohyama, Kanji</creatorcontrib><creatorcontrib>Fukuzawa, Hideya</creatorcontrib><creatorcontrib>Kohchi, Takayuki</creatorcontrib><creatorcontrib>Sano, Tohru</creatorcontrib><creatorcontrib>Sano, Satoshi</creatorcontrib><creatorcontrib>Shirai, Hiromasa</creatorcontrib><creatorcontrib>Umesono, Kazuhiko</creatorcontrib><creatorcontrib>Shiki, Yasuhiko</creatorcontrib><creatorcontrib>Takeuchi, Masayuki</creatorcontrib><creatorcontrib>Aota, Zhen Chang Shin-ichi</creatorcontrib><creatorcontrib>Inokuchi, Hachiro</creatorcontrib><creatorcontrib>Ozeki, Haruo</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohyama, Kanji</au><au>Fukuzawa, Hideya</au><au>Kohchi, Takayuki</au><au>Sano, Tohru</au><au>Sano, Satoshi</au><au>Shirai, Hiromasa</au><au>Umesono, Kazuhiko</au><au>Shiki, Yasuhiko</au><au>Takeuchi, Masayuki</au><au>Aota, Zhen Chang Shin-ichi</au><au>Inokuchi, Hachiro</au><au>Ozeki, Haruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and organization of Marchantia polymorpha chloroplast genome : I. Cloning and gene identification</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1988-09-20</date><risdate>1988</risdate><volume>203</volume><issue>2</issue><spage>281</spage><epage>298</epage><pages>281-298</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort,
Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IR
A and IR
B, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes, 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORPs) show structural similarities to
Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is
trans-split on the opposite DNA strand. The universal genetic code was confirmed by the substitution pattern of simultaneous codons, and by possible codon recognition of the chloroplast-encoded tRNA molecules, assuming no importation of tRNA molecules from the cytoplasm. The nucleotide residue A or T is preferred at the third position of the codons (G + C, 11.9%) and in intergenic spacers (G + C, 19.5%), resulting in an overall G + C content that is low (28.8%) throughout the liverwort chloroplast genome. Possible gene expression signals such as promoters and terminators for transcription, predicted locations of gene products, and DNA replicative origins are discussed.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>2462054</pmid><doi>10.1016/0022-2836(88)90001-0</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 1988-09, Vol.203 (2), p.281-298 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_78569503 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Base Sequence Biological and medical sciences Biotechnology Cells, Cultured chloroplast DNA Chloroplasts Chromosome Mapping cloning Cloning, Molecular DNA - genetics Fundamental and applied biological sciences. Psychology Genes Genetic engineering Genetic technics genomics Marchantia polymorpha Methods. Procedures. Technologies Molecular cloning Molecular Sequence Data nucleotide sequences Plants - genetics Ribosomal Proteins - genetics RNA - genetics structure |
title | Structure and organization of Marchantia polymorpha chloroplast genome : I. Cloning and gene identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20organization%20of%20Marchantia%20polymorpha%20chloroplast%20genome%20:%20I.%20Cloning%20and%20gene%20identification&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Ohyama,%20Kanji&rft.date=1988-09-20&rft.volume=203&rft.issue=2&rft.spage=281&rft.epage=298&rft.pages=281-298&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1016/0022-2836(88)90001-0&rft_dat=%3Cproquest_pubme%3E78569503%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78569503&rft_id=info:pmid/2462054&rft_els_id=0022283688900010&rfr_iscdi=true |