A Mathematical Approach to Optimizing the Radiation dose Distribution in Heterogeneous Tumours
This paper offers a general mathematical approach to dose distribution optimization which allows tumours with different degrees of complexity to be considered. Two different biological criteria - A) keeping the control probability of the different parts of the tumour (local tumour control probabilit...
Gespeichert in:
Veröffentlicht in: | Acta oncologica 1996, Vol.35 (6), p.727-732 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 732 |
---|---|
container_issue | 6 |
container_start_page | 727 |
container_title | Acta oncologica |
container_volume | 35 |
creator | Stavreva, Nadejda A. Stavrev, Pavel V. Round, William H. |
description | This paper offers a general mathematical approach to dose distribution optimization which allows tumours with different degrees of complexity to be considered. Two different biological criteria - A) keeping the control probability of the different parts of the tumour (local tumour control probability) uniform throughout the tumour and B) minimizing the mean dose delivered to the tumour are studied. For both criteria we impose the requirement that the whole tumour control probability be kept on a certain desired level. It is proved that the adoption of the first criterion requires a dose distribution logarithmic with the cell density and proportional to the inverse of the cell radiosensitivity while the adoption of the second criterion necessitates a homogeneous dose distribution when the cell radiosensitivity is constant. The corresponding formula for the dose distribution in case of heterogeneous cell radiosensitivity is also given. The two criteria are compared in terms of local tumour control probability and mean dose delivered to the tumour. It is concluded that maintaining constant local tumour control probability (criterion A) may be of greater clinical importance then minimizing the mean dose (criterion B). |
doi_str_mv | 10.3109/02841869609084006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78567332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78567332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c0e78ec96b0f1d6a3d751f750dd4a3bcf15d3e0d64f82815b8561d7a9401202e3</originalsourceid><addsrcrecordid>eNqFkEFrFDEYhoNY6tr6AzwIOYi30S_JJJPB01KtFVoKpUJPDpnkm27KzGRNMgf99c12l14EPQXyPu_Hy0PIWwYfBYP2E3BdM61aBS3oGkC9ICumJKs4V3cvyWqXVwW4e0Vep_QAAFw08pgc61ZoztmK_FzTK5M3OJnsrRnperuNwdgNzYFeb7Of_B8_39NC0BvjfKHCTF1ISL_4lKPvl6cfP9MLzBjDPc4YlkRvlyksMZ2So8GMCd8c3hPy4_zr7dlFdXn97fvZ-rKytWS5soCNRtuqHgbmlBGukWxoJDhXG9HbgUknEJyqB801k72WirnGtDUwDhzFCfmwv1vW_1ow5W7yyeI4mqc5XVMKjRD8vyCTunAgCsj2oI0hpYhDt41-MvF3x6Dbye_-kl867w7Hl35C99w42C75-0NuUpE9RDNbn54xwRWIdrfx8x7z8xDiZDZoxryxJmL3UKTOReQ_RjwC1_6esw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15873303</pqid></control><display><type>article</type><title>A Mathematical Approach to Optimizing the Radiation dose Distribution in Heterogeneous Tumours</title><source>Taylor & Francis</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stavreva, Nadejda A. ; Stavrev, Pavel V. ; Round, William H.</creator><creatorcontrib>Stavreva, Nadejda A. ; Stavrev, Pavel V. ; Round, William H.</creatorcontrib><description>This paper offers a general mathematical approach to dose distribution optimization which allows tumours with different degrees of complexity to be considered. Two different biological criteria - A) keeping the control probability of the different parts of the tumour (local tumour control probability) uniform throughout the tumour and B) minimizing the mean dose delivered to the tumour are studied. For both criteria we impose the requirement that the whole tumour control probability be kept on a certain desired level. It is proved that the adoption of the first criterion requires a dose distribution logarithmic with the cell density and proportional to the inverse of the cell radiosensitivity while the adoption of the second criterion necessitates a homogeneous dose distribution when the cell radiosensitivity is constant. The corresponding formula for the dose distribution in case of heterogeneous cell radiosensitivity is also given. The two criteria are compared in terms of local tumour control probability and mean dose delivered to the tumour. It is concluded that maintaining constant local tumour control probability (criterion A) may be of greater clinical importance then minimizing the mean dose (criterion B).</description><identifier>ISSN: 0284-186X</identifier><identifier>EISSN: 1651-226X</identifier><identifier>DOI: 10.3109/02841869609084006</identifier><identifier>PMID: 8938221</identifier><identifier>CODEN: ACTOEL</identifier><language>eng</language><publisher>Basingstoke: Informa UK Ltd</publisher><subject>Animals ; Biological and medical sciences ; Humans ; Medical sciences ; Models, Theoretical ; Neoplasms - pathology ; Neoplasms - radiotherapy ; Radiation therapy and radiosensitizing agent ; Radiotherapy Dosage ; Treatment with physical agents ; Treatment. General aspects ; Tumors</subject><ispartof>Acta oncologica, 1996, Vol.35 (6), p.727-732</ispartof><rights>1996 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c0e78ec96b0f1d6a3d751f750dd4a3bcf15d3e0d64f82815b8561d7a9401202e3</citedby><cites>FETCH-LOGICAL-c451t-c0e78ec96b0f1d6a3d751f750dd4a3bcf15d3e0d64f82815b8561d7a9401202e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.3109/02841869609084006$$EPDF$$P50$$Ginformahealthcare$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.3109/02841869609084006$$EHTML$$P50$$Ginformahealthcare$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,61194,61375</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3260392$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8938221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stavreva, Nadejda A.</creatorcontrib><creatorcontrib>Stavrev, Pavel V.</creatorcontrib><creatorcontrib>Round, William H.</creatorcontrib><title>A Mathematical Approach to Optimizing the Radiation dose Distribution in Heterogeneous Tumours</title><title>Acta oncologica</title><addtitle>Acta Oncol</addtitle><description>This paper offers a general mathematical approach to dose distribution optimization which allows tumours with different degrees of complexity to be considered. Two different biological criteria - A) keeping the control probability of the different parts of the tumour (local tumour control probability) uniform throughout the tumour and B) minimizing the mean dose delivered to the tumour are studied. For both criteria we impose the requirement that the whole tumour control probability be kept on a certain desired level. It is proved that the adoption of the first criterion requires a dose distribution logarithmic with the cell density and proportional to the inverse of the cell radiosensitivity while the adoption of the second criterion necessitates a homogeneous dose distribution when the cell radiosensitivity is constant. The corresponding formula for the dose distribution in case of heterogeneous cell radiosensitivity is also given. The two criteria are compared in terms of local tumour control probability and mean dose delivered to the tumour. It is concluded that maintaining constant local tumour control probability (criterion A) may be of greater clinical importance then minimizing the mean dose (criterion B).</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Models, Theoretical</subject><subject>Neoplasms - pathology</subject><subject>Neoplasms - radiotherapy</subject><subject>Radiation therapy and radiosensitizing agent</subject><subject>Radiotherapy Dosage</subject><subject>Treatment with physical agents</subject><subject>Treatment. General aspects</subject><subject>Tumors</subject><issn>0284-186X</issn><issn>1651-226X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFrFDEYhoNY6tr6AzwIOYi30S_JJJPB01KtFVoKpUJPDpnkm27KzGRNMgf99c12l14EPQXyPu_Hy0PIWwYfBYP2E3BdM61aBS3oGkC9ICumJKs4V3cvyWqXVwW4e0Vep_QAAFw08pgc61ZoztmK_FzTK5M3OJnsrRnperuNwdgNzYFeb7Of_B8_39NC0BvjfKHCTF1ISL_4lKPvl6cfP9MLzBjDPc4YlkRvlyksMZ2So8GMCd8c3hPy4_zr7dlFdXn97fvZ-rKytWS5soCNRtuqHgbmlBGukWxoJDhXG9HbgUknEJyqB801k72WirnGtDUwDhzFCfmwv1vW_1ow5W7yyeI4mqc5XVMKjRD8vyCTunAgCsj2oI0hpYhDt41-MvF3x6Dbye_-kl867w7Hl35C99w42C75-0NuUpE9RDNbn54xwRWIdrfx8x7z8xDiZDZoxryxJmL3UKTOReQ_RjwC1_6esw</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Stavreva, Nadejda A.</creator><creator>Stavrev, Pavel V.</creator><creator>Round, William H.</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>1996</creationdate><title>A Mathematical Approach to Optimizing the Radiation dose Distribution in Heterogeneous Tumours</title><author>Stavreva, Nadejda A. ; Stavrev, Pavel V. ; Round, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c0e78ec96b0f1d6a3d751f750dd4a3bcf15d3e0d64f82815b8561d7a9401202e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Models, Theoretical</topic><topic>Neoplasms - pathology</topic><topic>Neoplasms - radiotherapy</topic><topic>Radiation therapy and radiosensitizing agent</topic><topic>Radiotherapy Dosage</topic><topic>Treatment with physical agents</topic><topic>Treatment. General aspects</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stavreva, Nadejda A.</creatorcontrib><creatorcontrib>Stavrev, Pavel V.</creatorcontrib><creatorcontrib>Round, William H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta oncologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stavreva, Nadejda A.</au><au>Stavrev, Pavel V.</au><au>Round, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mathematical Approach to Optimizing the Radiation dose Distribution in Heterogeneous Tumours</atitle><jtitle>Acta oncologica</jtitle><addtitle>Acta Oncol</addtitle><date>1996</date><risdate>1996</risdate><volume>35</volume><issue>6</issue><spage>727</spage><epage>732</epage><pages>727-732</pages><issn>0284-186X</issn><eissn>1651-226X</eissn><coden>ACTOEL</coden><abstract>This paper offers a general mathematical approach to dose distribution optimization which allows tumours with different degrees of complexity to be considered. Two different biological criteria - A) keeping the control probability of the different parts of the tumour (local tumour control probability) uniform throughout the tumour and B) minimizing the mean dose delivered to the tumour are studied. For both criteria we impose the requirement that the whole tumour control probability be kept on a certain desired level. It is proved that the adoption of the first criterion requires a dose distribution logarithmic with the cell density and proportional to the inverse of the cell radiosensitivity while the adoption of the second criterion necessitates a homogeneous dose distribution when the cell radiosensitivity is constant. The corresponding formula for the dose distribution in case of heterogeneous cell radiosensitivity is also given. The two criteria are compared in terms of local tumour control probability and mean dose delivered to the tumour. It is concluded that maintaining constant local tumour control probability (criterion A) may be of greater clinical importance then minimizing the mean dose (criterion B).</abstract><cop>Basingstoke</cop><pub>Informa UK Ltd</pub><pmid>8938221</pmid><doi>10.3109/02841869609084006</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0284-186X |
ispartof | Acta oncologica, 1996, Vol.35 (6), p.727-732 |
issn | 0284-186X 1651-226X |
language | eng |
recordid | cdi_proquest_miscellaneous_78567332 |
source | Taylor & Francis; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Biological and medical sciences Humans Medical sciences Models, Theoretical Neoplasms - pathology Neoplasms - radiotherapy Radiation therapy and radiosensitizing agent Radiotherapy Dosage Treatment with physical agents Treatment. General aspects Tumors |
title | A Mathematical Approach to Optimizing the Radiation dose Distribution in Heterogeneous Tumours |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mathematical%20Approach%20to%20Optimizing%20the%20Radiation%20dose%20Distribution%20in%20Heterogeneous%20Tumours&rft.jtitle=Acta%20oncologica&rft.au=Stavreva,%20Nadejda%20A.&rft.date=1996&rft.volume=35&rft.issue=6&rft.spage=727&rft.epage=732&rft.pages=727-732&rft.issn=0284-186X&rft.eissn=1651-226X&rft.coden=ACTOEL&rft_id=info:doi/10.3109/02841869609084006&rft_dat=%3Cproquest_cross%3E78567332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15873303&rft_id=info:pmid/8938221&rfr_iscdi=true |