Regulation of glycosylation. The influence of protein structure on N-linked oligosaccharide processing
The Sindbis virus glycoproteins, E1 and E2, comprise a useful model system for evaluating the effects of local protein structure on the processing of N-linked oligosaccharides by Golgi enzymes. The conversion of oligomannose to N-acetyllactosamine (complex) oligosaccharides is hindered to different...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1988-12, Vol.263 (36), p.19303-19317 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19317 |
---|---|
container_issue | 36 |
container_start_page | 19303 |
container_title | The Journal of biological chemistry |
container_volume | 263 |
creator | Hubbard, S C |
description | The Sindbis virus glycoproteins, E1 and E2, comprise a useful model system for evaluating the effects of local protein structure on the processing of N-linked oligosaccharides by Golgi enzymes. The conversion of oligomannose to N-acetyllactosamine (complex) oligosaccharides is hindered to different extents at the four glycosylation sites, so that the complex/oligomannose ratio decreases in the order E1-Asn139 greater than E2-Asn196 greater than E1-Asn245 greater than E2-Asn318. The processing steps most susceptible to interference were deduced from the oligosaccharide compositions at hindered sites in virus from baby hamster kidney cells (BHK), chick embryo fibroblasts (CEF), and normal and hamster sarcoma virus (HSV)-transformed hamster fibroblasts (Nil-8). Persistence of Man6-9GlcNAc2 was taken to indicate interference with alpha 2-mannosidase(s) I (alpha-mannosidase I), Man5GlcNAc2, with UDP-GlcNAc:alpha-D-mannoside beta 1—-2-N-acetylglucosaminyltransferase I (GlcNAc transferase I), and unbisected hybrid glycans, with GlcNAc transferase I-dependent alpha 3(alpha 6)-mannosidase (alpha-mannosidase II). Taken together, the results indicate that all four sites acquire a precursor oligosaccharide with equally high efficiency, but alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are all impeded at E2-Asn318 and, to a lesser extent, at E1-Asn245. In contrast, sialic acid and galactose transfer to hybrid glycans (in BHK cells) is virtually quantitative even at E2-Asn318. E2-Asn318 carried no complex oligosaccharides, but the structures of those at E1-Asn245 indicate almost complete GlcNAc transfer by UDP-GlcNAc:alpha-D-mannoside beta 1—-2-N-acetylglucosaminyltransferase II (GlcNAc transferase II), galactosylation, and sialylation. Because the E2-Asn318 and E1-Asn245 glycans have previously been shown to be less accessible to a steric probe than those at E2-Asn196 or E1-Asn139, a simple explanation for these results would be that alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are more susceptible to steric hindrance than are the later processing steps examined. Finally, in addition to these site-specific effects, the overall extent of viral oligosaccharide processing varied with host and cellular growth status. For example, alpha-mannosidase I processing is more complete in BHK cells compared to CEF, and in confluent Nil-8 cells compared to subconfluent or HSV-transformed Nil-8 cells. |
doi_str_mv | 10.1016/S0021-9258(19)77635-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78566823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819776352</els_id><sourcerecordid>15075506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-e3094470fb56e1bffa1b08c9bef5603fa01c3b5e109548bf6589a14380a49a723</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS1EVYbCT6iUBUKwSPEjduwVQhUvqSoSFImd5TjXicFjFzsBzb9v0hlNl_XG0r3f9bk-B6Fzgi8IJuLdD4wpqRXl8g1Rb9tWMF7TJ2hDsGQ14-TXU7Q5Is_Q81J-4-U0ipyiU0aUFFRtkPsOwxzM5FOskquGsLOp7PaFi-pmhMpHF2aIFtb-bU4T-FiVKc92mvNSjNV1HXz8A32Vgh9SMdaOJvseVtpCKT4OL9CJM6HAy8N9hn5--nhz-aW--vb56-WHq9pyQacaGFZN02LXcQGkc86QDkurOnBcYOYMJpZ1HAhWvJGdE1wqQxomsWmUaSk7Q6_37y7Sf2cok976YiEEEyHNRbeSCyEpexQkHLecY7GAfA_anErJ4PRt9luTd5pgvQah74PQq8uaKH0fhF43OT8IzN0W-uPUwfml_-rQN8Wa4LKJ1pcj1lLChGgfsNEP43-fQXc-2RG2mgqmmVgkGV6_836PwWLuPw9ZF-vX0PplxE66T_6Rfe8AaHKxeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15075506</pqid></control><display><type>article</type><title>Regulation of glycosylation. The influence of protein structure on N-linked oligosaccharide processing</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Hubbard, S C</creator><creatorcontrib>Hubbard, S C</creatorcontrib><description>The Sindbis virus glycoproteins, E1 and E2, comprise a useful model system for evaluating the effects of local protein structure on the processing of N-linked oligosaccharides by Golgi enzymes. The conversion of oligomannose to N-acetyllactosamine (complex) oligosaccharides is hindered to different extents at the four glycosylation sites, so that the complex/oligomannose ratio decreases in the order E1-Asn139 greater than E2-Asn196 greater than E1-Asn245 greater than E2-Asn318. The processing steps most susceptible to interference were deduced from the oligosaccharide compositions at hindered sites in virus from baby hamster kidney cells (BHK), chick embryo fibroblasts (CEF), and normal and hamster sarcoma virus (HSV)-transformed hamster fibroblasts (Nil-8). Persistence of Man6-9GlcNAc2 was taken to indicate interference with alpha 2-mannosidase(s) I (alpha-mannosidase I), Man5GlcNAc2, with UDP-GlcNAc:alpha-D-mannoside beta 1—-2-N-acetylglucosaminyltransferase I (GlcNAc transferase I), and unbisected hybrid glycans, with GlcNAc transferase I-dependent alpha 3(alpha 6)-mannosidase (alpha-mannosidase II). Taken together, the results indicate that all four sites acquire a precursor oligosaccharide with equally high efficiency, but alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are all impeded at E2-Asn318 and, to a lesser extent, at E1-Asn245. In contrast, sialic acid and galactose transfer to hybrid glycans (in BHK cells) is virtually quantitative even at E2-Asn318. E2-Asn318 carried no complex oligosaccharides, but the structures of those at E1-Asn245 indicate almost complete GlcNAc transfer by UDP-GlcNAc:alpha-D-mannoside beta 1—-2-N-acetylglucosaminyltransferase II (GlcNAc transferase II), galactosylation, and sialylation. Because the E2-Asn318 and E1-Asn245 glycans have previously been shown to be less accessible to a steric probe than those at E2-Asn196 or E1-Asn139, a simple explanation for these results would be that alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are more susceptible to steric hindrance than are the later processing steps examined. Finally, in addition to these site-specific effects, the overall extent of viral oligosaccharide processing varied with host and cellular growth status. For example, alpha-mannosidase I processing is more complete in BHK cells compared to CEF, and in confluent Nil-8 cells compared to subconfluent or HSV-transformed Nil-8 cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(19)77635-2</identifier><identifier>PMID: 3198629</identifier><identifier>CODEN: JBCHA3</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Analytical, structural and metabolic biochemistry ; Animals ; Biological and medical sciences ; Carbohydrate Conformation ; Carbohydrate Sequence ; Cell Line ; Fundamental and applied biological sciences. Psychology ; Glycopeptides - genetics ; Glycopeptides - isolation & purification ; Glycoproteins ; Glycoproteins - genetics ; Glycoside Hydrolases ; Glycosylation ; Golgi Apparatus - enzymology ; Molecular Sequence Data ; Oligosaccharides - genetics ; Protein Processing, Post-Translational ; Proteins ; Sindbis virus ; Sindbis Virus - genetics ; Viral Proteins - genetics</subject><ispartof>The Journal of biological chemistry, 1988-12, Vol.263 (36), p.19303-19317</ispartof><rights>1988 © 1988 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-e3094470fb56e1bffa1b08c9bef5603fa01c3b5e109548bf6589a14380a49a723</citedby><cites>FETCH-LOGICAL-c562t-e3094470fb56e1bffa1b08c9bef5603fa01c3b5e109548bf6589a14380a49a723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7213667$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3198629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hubbard, S C</creatorcontrib><title>Regulation of glycosylation. The influence of protein structure on N-linked oligosaccharide processing</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The Sindbis virus glycoproteins, E1 and E2, comprise a useful model system for evaluating the effects of local protein structure on the processing of N-linked oligosaccharides by Golgi enzymes. The conversion of oligomannose to N-acetyllactosamine (complex) oligosaccharides is hindered to different extents at the four glycosylation sites, so that the complex/oligomannose ratio decreases in the order E1-Asn139 greater than E2-Asn196 greater than E1-Asn245 greater than E2-Asn318. The processing steps most susceptible to interference were deduced from the oligosaccharide compositions at hindered sites in virus from baby hamster kidney cells (BHK), chick embryo fibroblasts (CEF), and normal and hamster sarcoma virus (HSV)-transformed hamster fibroblasts (Nil-8). Persistence of Man6-9GlcNAc2 was taken to indicate interference with alpha 2-mannosidase(s) I (alpha-mannosidase I), Man5GlcNAc2, with UDP-GlcNAc:alpha-D-mannoside beta 1—-2-N-acetylglucosaminyltransferase I (GlcNAc transferase I), and unbisected hybrid glycans, with GlcNAc transferase I-dependent alpha 3(alpha 6)-mannosidase (alpha-mannosidase II). Taken together, the results indicate that all four sites acquire a precursor oligosaccharide with equally high efficiency, but alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are all impeded at E2-Asn318 and, to a lesser extent, at E1-Asn245. In contrast, sialic acid and galactose transfer to hybrid glycans (in BHK cells) is virtually quantitative even at E2-Asn318. E2-Asn318 carried no complex oligosaccharides, but the structures of those at E1-Asn245 indicate almost complete GlcNAc transfer by UDP-GlcNAc:alpha-D-mannoside beta 1—-2-N-acetylglucosaminyltransferase II (GlcNAc transferase II), galactosylation, and sialylation. Because the E2-Asn318 and E1-Asn245 glycans have previously been shown to be less accessible to a steric probe than those at E2-Asn196 or E1-Asn139, a simple explanation for these results would be that alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are more susceptible to steric hindrance than are the later processing steps examined. Finally, in addition to these site-specific effects, the overall extent of viral oligosaccharide processing varied with host and cellular growth status. For example, alpha-mannosidase I processing is more complete in BHK cells compared to CEF, and in confluent Nil-8 cells compared to subconfluent or HSV-transformed Nil-8 cells.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Carbohydrate Conformation</subject><subject>Carbohydrate Sequence</subject><subject>Cell Line</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycopeptides - genetics</subject><subject>Glycopeptides - isolation & purification</subject><subject>Glycoproteins</subject><subject>Glycoproteins - genetics</subject><subject>Glycoside Hydrolases</subject><subject>Glycosylation</subject><subject>Golgi Apparatus - enzymology</subject><subject>Molecular Sequence Data</subject><subject>Oligosaccharides - genetics</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Sindbis virus</subject><subject>Sindbis Virus - genetics</subject><subject>Viral Proteins - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS1EVYbCT6iUBUKwSPEjduwVQhUvqSoSFImd5TjXicFjFzsBzb9v0hlNl_XG0r3f9bk-B6Fzgi8IJuLdD4wpqRXl8g1Rb9tWMF7TJ2hDsGQ14-TXU7Q5Is_Q81J-4-U0ipyiU0aUFFRtkPsOwxzM5FOskquGsLOp7PaFi-pmhMpHF2aIFtb-bU4T-FiVKc92mvNSjNV1HXz8A32Vgh9SMdaOJvseVtpCKT4OL9CJM6HAy8N9hn5--nhz-aW--vb56-WHq9pyQacaGFZN02LXcQGkc86QDkurOnBcYOYMJpZ1HAhWvJGdE1wqQxomsWmUaSk7Q6_37y7Sf2cok976YiEEEyHNRbeSCyEpexQkHLecY7GAfA_anErJ4PRt9luTd5pgvQah74PQq8uaKH0fhF43OT8IzN0W-uPUwfml_-rQN8Wa4LKJ1pcj1lLChGgfsNEP43-fQXc-2RG2mgqmmVgkGV6_836PwWLuPw9ZF-vX0PplxE66T_6Rfe8AaHKxeQ</recordid><startdate>19881225</startdate><enddate>19881225</enddate><creator>Hubbard, S C</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19881225</creationdate><title>Regulation of glycosylation. The influence of protein structure on N-linked oligosaccharide processing</title><author>Hubbard, S C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-e3094470fb56e1bffa1b08c9bef5603fa01c3b5e109548bf6589a14380a49a723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Carbohydrate Conformation</topic><topic>Carbohydrate Sequence</topic><topic>Cell Line</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycopeptides - genetics</topic><topic>Glycopeptides - isolation & purification</topic><topic>Glycoproteins</topic><topic>Glycoproteins - genetics</topic><topic>Glycoside Hydrolases</topic><topic>Glycosylation</topic><topic>Golgi Apparatus - enzymology</topic><topic>Molecular Sequence Data</topic><topic>Oligosaccharides - genetics</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Sindbis virus</topic><topic>Sindbis Virus - genetics</topic><topic>Viral Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubbard, S C</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubbard, S C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of glycosylation. The influence of protein structure on N-linked oligosaccharide processing</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1988-12-25</date><risdate>1988</risdate><volume>263</volume><issue>36</issue><spage>19303</spage><epage>19317</epage><pages>19303-19317</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><coden>JBCHA3</coden><abstract>The Sindbis virus glycoproteins, E1 and E2, comprise a useful model system for evaluating the effects of local protein structure on the processing of N-linked oligosaccharides by Golgi enzymes. The conversion of oligomannose to N-acetyllactosamine (complex) oligosaccharides is hindered to different extents at the four glycosylation sites, so that the complex/oligomannose ratio decreases in the order E1-Asn139 greater than E2-Asn196 greater than E1-Asn245 greater than E2-Asn318. The processing steps most susceptible to interference were deduced from the oligosaccharide compositions at hindered sites in virus from baby hamster kidney cells (BHK), chick embryo fibroblasts (CEF), and normal and hamster sarcoma virus (HSV)-transformed hamster fibroblasts (Nil-8). Persistence of Man6-9GlcNAc2 was taken to indicate interference with alpha 2-mannosidase(s) I (alpha-mannosidase I), Man5GlcNAc2, with UDP-GlcNAc:alpha-D-mannoside beta 1—-2-N-acetylglucosaminyltransferase I (GlcNAc transferase I), and unbisected hybrid glycans, with GlcNAc transferase I-dependent alpha 3(alpha 6)-mannosidase (alpha-mannosidase II). Taken together, the results indicate that all four sites acquire a precursor oligosaccharide with equally high efficiency, but alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are all impeded at E2-Asn318 and, to a lesser extent, at E1-Asn245. In contrast, sialic acid and galactose transfer to hybrid glycans (in BHK cells) is virtually quantitative even at E2-Asn318. E2-Asn318 carried no complex oligosaccharides, but the structures of those at E1-Asn245 indicate almost complete GlcNAc transfer by UDP-GlcNAc:alpha-D-mannoside beta 1—-2-N-acetylglucosaminyltransferase II (GlcNAc transferase II), galactosylation, and sialylation. Because the E2-Asn318 and E1-Asn245 glycans have previously been shown to be less accessible to a steric probe than those at E2-Asn196 or E1-Asn139, a simple explanation for these results would be that alpha-mannosidase I, GlcNAc transferase I, and alpha-mannosidase II are more susceptible to steric hindrance than are the later processing steps examined. Finally, in addition to these site-specific effects, the overall extent of viral oligosaccharide processing varied with host and cellular growth status. For example, alpha-mannosidase I processing is more complete in BHK cells compared to CEF, and in confluent Nil-8 cells compared to subconfluent or HSV-transformed Nil-8 cells.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>3198629</pmid><doi>10.1016/S0021-9258(19)77635-2</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1988-12, Vol.263 (36), p.19303-19317 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_78566823 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Analytical, structural and metabolic biochemistry Animals Biological and medical sciences Carbohydrate Conformation Carbohydrate Sequence Cell Line Fundamental and applied biological sciences. Psychology Glycopeptides - genetics Glycopeptides - isolation & purification Glycoproteins Glycoproteins - genetics Glycoside Hydrolases Glycosylation Golgi Apparatus - enzymology Molecular Sequence Data Oligosaccharides - genetics Protein Processing, Post-Translational Proteins Sindbis virus Sindbis Virus - genetics Viral Proteins - genetics |
title | Regulation of glycosylation. The influence of protein structure on N-linked oligosaccharide processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20glycosylation.%20The%20influence%20of%20protein%20structure%20on%20N-linked%20oligosaccharide%20processing&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Hubbard,%20S%20C&rft.date=1988-12-25&rft.volume=263&rft.issue=36&rft.spage=19303&rft.epage=19317&rft.pages=19303-19317&rft.issn=0021-9258&rft.eissn=1083-351X&rft.coden=JBCHA3&rft_id=info:doi/10.1016/S0021-9258(19)77635-2&rft_dat=%3Cproquest_cross%3E15075506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15075506&rft_id=info:pmid/3198629&rft_els_id=S0021925819776352&rfr_iscdi=true |