Bovine UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine-1-phosphotransferase. II. Enzymatic characterization and identification of the catalytic subunit

The kinetic properties of UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) purified to homogeneity from lactating bovine mammary gland have been investigated. GlcNAc-phosphotransferase transferred GlcNAc 1-phosphate from UDP-GlcNAc to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1996-12, Vol.271 (49), p.31446-31451
Hauptverfasser: Bao, M, Elmendorf, B J, Booth, J L, Drake, R R, Canfield, W M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The kinetic properties of UDP-N-acetylglucosamine:lysosomal-enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) purified to homogeneity from lactating bovine mammary gland have been investigated. GlcNAc-phosphotransferase transferred GlcNAc 1-phosphate from UDP-GlcNAc to the synthetic acceptor alpha-methylmannoside, generating GlcNAc-1-phospho-6-mannose alpha-methyl, the structure of which was confirmed by mass spectroscopy. GlcNAc-phosphotransferase was active between pH 5.7 and 9.3, with optimal activity between pH 6.6 and 7.5. Activity was strictly dependent on Mg2+ or Mn2+. The Km for Mn2+ was 185 microM. The Km for UDP-GlcNAc was 30 microM, and that for alpha-methylmannoside was 63 mM. The enzyme was competitively inhibited by UDP-Glc, with a Ki of 733 microM. The 166-kDa subunit was identified as the catalytic subunit by photoaffinity labeling with azido-[beta-32P]UDP-Glc. Purified GlcNAc-phosphotransferase utilizes the lysosomal enzyme uteroferrin approximately 163-fold more effectively than the non-lysosomal glycoprotein ribonuclease B. Antibodies to GlcNAc-phosphotransferase blocked the transfer to cathepsin D, but not to alpha-methylmannoside, suggesting that protein-protein interactions are required for the efficient utilization of glycoprotein acceptors. These results indicate that the purified bovine GlcNAc-phosphotransferase retains the specificity for lysosomal enzymes as acceptors previously observed with crude preparations.
ISSN:0021-9258
DOI:10.1074/jbc.271.49.31446