The Effect of Variance Function Estimation on Nonlinear Calibration Inference in Immunoassay Data

Often with data from immunoassays, the concentration-response relationship is nonlinear and intra-assay response variance is heterogeneous. Estimation of the standard curve is usually based on a nonlinear heteroscedastic regression model for concentration-response, where variance is modeled as a fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1996-03, Vol.52 (1), p.158-175
Hauptverfasser: Belanger, Bruce A., Davidian, Marie, Giltinan, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 1
container_start_page 158
container_title Biometrics
container_volume 52
creator Belanger, Bruce A.
Davidian, Marie
Giltinan, David M.
description Often with data from immunoassays, the concentration-response relationship is nonlinear and intra-assay response variance is heterogeneous. Estimation of the standard curve is usually based on a nonlinear heteroscedastic regression model for concentration-response, where variance is modeled as a function of mean response and additional variance parameters. This paper discusses calibration inference for immunoassay data which exhibit this nonlinear heteroscedastic mean-variance relationship. An assessment of the effect of variance function estimation in three types of approximate large-sample confidence intervals for unknown concentrations is given by theoretical and empirical investigation and application to two examples. A major finding is that the accuracy of such calibration intervals depends critically on the nature of response variance and the quality with which variance parameters are estimated.
doi_str_mv 10.2307/2533153
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_78550950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2533153</jstor_id><sourcerecordid>2533153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-c8a30808dddaf4034c3c3d753c23562efc1fa9dbf03abc8e2dbbadc41142e2013</originalsourceid><addsrcrecordid>eNp1UE1Lw0AUXESptYq_QMhB9BR9-9UmR6mtFopeqngLL_uBKcmu7iaH_ntTU7wJD94bZt7ADCGXFO4Yh9k9k5xTyY_ImEpBUxAMjskYAKYpF_TjlJzFuO1hLoGNyCjLuZA5jAluPk2ysNaoNvE2ecdQoVMmWXZOtZV3ySK2VYO_Zz8v3tWVMxiSOdZVGQZi5awJZv9W9aBpOucxRtwlj9jiOTmxWEdzcdgT8rZcbObP6fr1aTV_WKeKg2xTlSGHDDKtNVoBXCiuuJ5JrhiXU2asohZzXVrgWKrMMF2WqJWgVDDDgPIJuRl8v4L_7kxsi6aKytQ1OuO7WMwyKffxe-HtIFTBxxiMLb5CHzHsCgrFvsziUGavvDpYdmVj9J_u0F7PXw_8NrY-_GvzA2yfemo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78550950</pqid></control><display><type>article</type><title>The Effect of Variance Function Estimation on Nonlinear Calibration Inference in Immunoassay Data</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Belanger, Bruce A. ; Davidian, Marie ; Giltinan, David M.</creator><creatorcontrib>Belanger, Bruce A. ; Davidian, Marie ; Giltinan, David M.</creatorcontrib><description>Often with data from immunoassays, the concentration-response relationship is nonlinear and intra-assay response variance is heterogeneous. Estimation of the standard curve is usually based on a nonlinear heteroscedastic regression model for concentration-response, where variance is modeled as a function of mean response and additional variance parameters. This paper discusses calibration inference for immunoassay data which exhibit this nonlinear heteroscedastic mean-variance relationship. An assessment of the effect of variance function estimation in three types of approximate large-sample confidence intervals for unknown concentrations is given by theoretical and empirical investigation and application to two examples. A major finding is that the accuracy of such calibration intervals depends critically on the nature of response variance and the quality with which variance parameters are estimated.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2533153</identifier><identifier>PMID: 8934590</identifier><language>eng</language><publisher>United States: International Biometric Society</publisher><subject>Algorithms ; Analysis of Variance ; Animals ; Biometrics ; Biometry - methods ; Calibration ; Computer Simulation ; Confidence interval ; Data Interpretation, Statistical ; Enzyme-Linked Immunosorbent Assay - standards ; Enzyme-Linked Immunosorbent Assay - statistics &amp; numerical data ; Estimation methods ; Humans ; Immunoassay - standards ; Immunoassay - statistics &amp; numerical data ; Inference ; Interval estimators ; Mathematical independent variables ; Monte Carlo Method ; Musical intervals ; Nonlinear Dynamics ; Pharmaceutical Preparations - analysis ; Pharmaceutical Preparations - standards ; Radioimmunoassay - standards ; Radioimmunoassay - statistics &amp; numerical data ; Recombinant Proteins - analysis ; Reference Standards ; Regression analysis ; Relaxin - analysis ; Statistical variance ; Swine</subject><ispartof>Biometrics, 1996-03, Vol.52 (1), p.158-175</ispartof><rights>Copyright 1996 The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-c8a30808dddaf4034c3c3d753c23562efc1fa9dbf03abc8e2dbbadc41142e2013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2533153$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2533153$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8934590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belanger, Bruce A.</creatorcontrib><creatorcontrib>Davidian, Marie</creatorcontrib><creatorcontrib>Giltinan, David M.</creatorcontrib><title>The Effect of Variance Function Estimation on Nonlinear Calibration Inference in Immunoassay Data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Often with data from immunoassays, the concentration-response relationship is nonlinear and intra-assay response variance is heterogeneous. Estimation of the standard curve is usually based on a nonlinear heteroscedastic regression model for concentration-response, where variance is modeled as a function of mean response and additional variance parameters. This paper discusses calibration inference for immunoassay data which exhibit this nonlinear heteroscedastic mean-variance relationship. An assessment of the effect of variance function estimation in three types of approximate large-sample confidence intervals for unknown concentrations is given by theoretical and empirical investigation and application to two examples. A major finding is that the accuracy of such calibration intervals depends critically on the nature of response variance and the quality with which variance parameters are estimated.</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Calibration</subject><subject>Computer Simulation</subject><subject>Confidence interval</subject><subject>Data Interpretation, Statistical</subject><subject>Enzyme-Linked Immunosorbent Assay - standards</subject><subject>Enzyme-Linked Immunosorbent Assay - statistics &amp; numerical data</subject><subject>Estimation methods</subject><subject>Humans</subject><subject>Immunoassay - standards</subject><subject>Immunoassay - statistics &amp; numerical data</subject><subject>Inference</subject><subject>Interval estimators</subject><subject>Mathematical independent variables</subject><subject>Monte Carlo Method</subject><subject>Musical intervals</subject><subject>Nonlinear Dynamics</subject><subject>Pharmaceutical Preparations - analysis</subject><subject>Pharmaceutical Preparations - standards</subject><subject>Radioimmunoassay - standards</subject><subject>Radioimmunoassay - statistics &amp; numerical data</subject><subject>Recombinant Proteins - analysis</subject><subject>Reference Standards</subject><subject>Regression analysis</subject><subject>Relaxin - analysis</subject><subject>Statistical variance</subject><subject>Swine</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UE1Lw0AUXESptYq_QMhB9BR9-9UmR6mtFopeqngLL_uBKcmu7iaH_ntTU7wJD94bZt7ADCGXFO4Yh9k9k5xTyY_ImEpBUxAMjskYAKYpF_TjlJzFuO1hLoGNyCjLuZA5jAluPk2ysNaoNvE2ecdQoVMmWXZOtZV3ySK2VYO_Zz8v3tWVMxiSOdZVGQZi5awJZv9W9aBpOucxRtwlj9jiOTmxWEdzcdgT8rZcbObP6fr1aTV_WKeKg2xTlSGHDDKtNVoBXCiuuJ5JrhiXU2asohZzXVrgWKrMMF2WqJWgVDDDgPIJuRl8v4L_7kxsi6aKytQ1OuO7WMwyKffxe-HtIFTBxxiMLb5CHzHsCgrFvsziUGavvDpYdmVj9J_u0F7PXw_8NrY-_GvzA2yfemo</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Belanger, Bruce A.</creator><creator>Davidian, Marie</creator><creator>Giltinan, David M.</creator><general>International Biometric Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960301</creationdate><title>The Effect of Variance Function Estimation on Nonlinear Calibration Inference in Immunoassay Data</title><author>Belanger, Bruce A. ; Davidian, Marie ; Giltinan, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-c8a30808dddaf4034c3c3d753c23562efc1fa9dbf03abc8e2dbbadc41142e2013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Calibration</topic><topic>Computer Simulation</topic><topic>Confidence interval</topic><topic>Data Interpretation, Statistical</topic><topic>Enzyme-Linked Immunosorbent Assay - standards</topic><topic>Enzyme-Linked Immunosorbent Assay - statistics &amp; numerical data</topic><topic>Estimation methods</topic><topic>Humans</topic><topic>Immunoassay - standards</topic><topic>Immunoassay - statistics &amp; numerical data</topic><topic>Inference</topic><topic>Interval estimators</topic><topic>Mathematical independent variables</topic><topic>Monte Carlo Method</topic><topic>Musical intervals</topic><topic>Nonlinear Dynamics</topic><topic>Pharmaceutical Preparations - analysis</topic><topic>Pharmaceutical Preparations - standards</topic><topic>Radioimmunoassay - standards</topic><topic>Radioimmunoassay - statistics &amp; numerical data</topic><topic>Recombinant Proteins - analysis</topic><topic>Reference Standards</topic><topic>Regression analysis</topic><topic>Relaxin - analysis</topic><topic>Statistical variance</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belanger, Bruce A.</creatorcontrib><creatorcontrib>Davidian, Marie</creatorcontrib><creatorcontrib>Giltinan, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belanger, Bruce A.</au><au>Davidian, Marie</au><au>Giltinan, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Variance Function Estimation on Nonlinear Calibration Inference in Immunoassay Data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>1996-03-01</date><risdate>1996</risdate><volume>52</volume><issue>1</issue><spage>158</spage><epage>175</epage><pages>158-175</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Often with data from immunoassays, the concentration-response relationship is nonlinear and intra-assay response variance is heterogeneous. Estimation of the standard curve is usually based on a nonlinear heteroscedastic regression model for concentration-response, where variance is modeled as a function of mean response and additional variance parameters. This paper discusses calibration inference for immunoassay data which exhibit this nonlinear heteroscedastic mean-variance relationship. An assessment of the effect of variance function estimation in three types of approximate large-sample confidence intervals for unknown concentrations is given by theoretical and empirical investigation and application to two examples. A major finding is that the accuracy of such calibration intervals depends critically on the nature of response variance and the quality with which variance parameters are estimated.</abstract><cop>United States</cop><pub>International Biometric Society</pub><pmid>8934590</pmid><doi>10.2307/2533153</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1996-03, Vol.52 (1), p.158-175
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_78550950
source MEDLINE; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algorithms
Analysis of Variance
Animals
Biometrics
Biometry - methods
Calibration
Computer Simulation
Confidence interval
Data Interpretation, Statistical
Enzyme-Linked Immunosorbent Assay - standards
Enzyme-Linked Immunosorbent Assay - statistics & numerical data
Estimation methods
Humans
Immunoassay - standards
Immunoassay - statistics & numerical data
Inference
Interval estimators
Mathematical independent variables
Monte Carlo Method
Musical intervals
Nonlinear Dynamics
Pharmaceutical Preparations - analysis
Pharmaceutical Preparations - standards
Radioimmunoassay - standards
Radioimmunoassay - statistics & numerical data
Recombinant Proteins - analysis
Reference Standards
Regression analysis
Relaxin - analysis
Statistical variance
Swine
title The Effect of Variance Function Estimation on Nonlinear Calibration Inference in Immunoassay Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Variance%20Function%20Estimation%20on%20Nonlinear%20Calibration%20Inference%20in%20Immunoassay%20Data&rft.jtitle=Biometrics&rft.au=Belanger,%20Bruce%20A.&rft.date=1996-03-01&rft.volume=52&rft.issue=1&rft.spage=158&rft.epage=175&rft.pages=158-175&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.2307/2533153&rft_dat=%3Cjstor_proqu%3E2533153%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78550950&rft_id=info:pmid/8934590&rft_jstor_id=2533153&rfr_iscdi=true