Modification of the erythrocyte membrane dielectric constant by alcohols

Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of membrane biology 1988-08, Vol.104 (1), p.57-68
Hauptverfasser: ORME, F. W, MORONNE, M. M, MACEY, R. I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 57
container_title The Journal of membrane biology
container_volume 104
creator ORME, F. W
MORONNE, M. M
MACEY, R. I
description Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.
doi_str_mv 10.1007/BF01871902
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78502067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78502067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-5f6e5b8b8b364103fef6f8aa2842960882d9aa0affc0b24f7198ecedcbcbdf903</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EKqWwsCN5QAxIgfNHbGeEilKkIhaYI8ex1aAkBtsd8u8JalRGdMMN76NXdw9ClwTuCIC8f1wBUZIUQI_QnHBGM8IpP0ZzAEozKhg5RWcxfgIQKQWfoRkjihOp5mj96uvGNUanxvfYO5y2FtswpG3wZkgWd7argu4trhvbWpNCY7DxfUy6T7gasG6N3_o2nqMTp9toL6a9QB-rp_flOtu8Pb8sHzaZYZymLHfC5pUahwlOgDnrhFNaU8VpIUApWhdag3bOQEW5G79S1tjaVKaqXQFsgW72vV_Bf-9sTGXXRGPbdrzR72IpVQ4UhPwXJDllQoliBG_3oAk-xmBd-RWaToehJFD--i3__I7w1dS6qzpbH9BJ6JhfT7mORrduVGeaeMAkMMUKwn4A6FqCbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15236869</pqid></control><display><type>article</type><title>Modification of the erythrocyte membrane dielectric constant by alcohols</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>ORME, F. W ; MORONNE, M. M ; MACEY, R. I</creator><creatorcontrib>ORME, F. W ; MORONNE, M. M ; MACEY, R. I</creatorcontrib><description>Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/BF01871902</identifier><identifier>PMID: 3184178</identifier><identifier>CODEN: JMBBBO</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>alcohols ; Alcohols - pharmacology ; Arsenicals - blood ; Biological and medical sciences ; Biological membranes ; Butanols - pharmacology ; Cell Membrane Permeability - drug effects ; Cyclic N-Oxides ; dielectric constant ; Erythrocyte Membrane - drug effects ; Erythrocyte Membrane - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; In Vitro Techniques ; Ions - blood ; Lipid Bilayers - metabolism ; Mathematics ; Membrane Fluidity - drug effects ; Membrane physicochemistry ; Membrane Potentials - drug effects ; Molecular biophysics ; plasma membranes ; Spin Labels</subject><ispartof>The Journal of membrane biology, 1988-08, Vol.104 (1), p.57-68</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-5f6e5b8b8b364103fef6f8aa2842960882d9aa0affc0b24f7198ecedcbcbdf903</citedby><cites>FETCH-LOGICAL-c342t-5f6e5b8b8b364103fef6f8aa2842960882d9aa0affc0b24f7198ecedcbcbdf903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7038391$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3184178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ORME, F. W</creatorcontrib><creatorcontrib>MORONNE, M. M</creatorcontrib><creatorcontrib>MACEY, R. I</creatorcontrib><title>Modification of the erythrocyte membrane dielectric constant by alcohols</title><title>The Journal of membrane biology</title><addtitle>J Membr Biol</addtitle><description>Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.</description><subject>alcohols</subject><subject>Alcohols - pharmacology</subject><subject>Arsenicals - blood</subject><subject>Biological and medical sciences</subject><subject>Biological membranes</subject><subject>Butanols - pharmacology</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cyclic N-Oxides</subject><subject>dielectric constant</subject><subject>Erythrocyte Membrane - drug effects</subject><subject>Erythrocyte Membrane - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Ions - blood</subject><subject>Lipid Bilayers - metabolism</subject><subject>Mathematics</subject><subject>Membrane Fluidity - drug effects</subject><subject>Membrane physicochemistry</subject><subject>Membrane Potentials - drug effects</subject><subject>Molecular biophysics</subject><subject>plasma membranes</subject><subject>Spin Labels</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EKqWwsCN5QAxIgfNHbGeEilKkIhaYI8ex1aAkBtsd8u8JalRGdMMN76NXdw9ClwTuCIC8f1wBUZIUQI_QnHBGM8IpP0ZzAEozKhg5RWcxfgIQKQWfoRkjihOp5mj96uvGNUanxvfYO5y2FtswpG3wZkgWd7argu4trhvbWpNCY7DxfUy6T7gasG6N3_o2nqMTp9toL6a9QB-rp_flOtu8Pb8sHzaZYZymLHfC5pUahwlOgDnrhFNaU8VpIUApWhdag3bOQEW5G79S1tjaVKaqXQFsgW72vV_Bf-9sTGXXRGPbdrzR72IpVQ4UhPwXJDllQoliBG_3oAk-xmBd-RWaToehJFD--i3__I7w1dS6qzpbH9BJ6JhfT7mORrduVGeaeMAkMMUKwn4A6FqCbg</recordid><startdate>19880801</startdate><enddate>19880801</enddate><creator>ORME, F. W</creator><creator>MORONNE, M. M</creator><creator>MACEY, R. I</creator><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19880801</creationdate><title>Modification of the erythrocyte membrane dielectric constant by alcohols</title><author>ORME, F. W ; MORONNE, M. M ; MACEY, R. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-5f6e5b8b8b364103fef6f8aa2842960882d9aa0affc0b24f7198ecedcbcbdf903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>alcohols</topic><topic>Alcohols - pharmacology</topic><topic>Arsenicals - blood</topic><topic>Biological and medical sciences</topic><topic>Biological membranes</topic><topic>Butanols - pharmacology</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cyclic N-Oxides</topic><topic>dielectric constant</topic><topic>Erythrocyte Membrane - drug effects</topic><topic>Erythrocyte Membrane - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Ions - blood</topic><topic>Lipid Bilayers - metabolism</topic><topic>Mathematics</topic><topic>Membrane Fluidity - drug effects</topic><topic>Membrane physicochemistry</topic><topic>Membrane Potentials - drug effects</topic><topic>Molecular biophysics</topic><topic>plasma membranes</topic><topic>Spin Labels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ORME, F. W</creatorcontrib><creatorcontrib>MORONNE, M. M</creatorcontrib><creatorcontrib>MACEY, R. I</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ORME, F. W</au><au>MORONNE, M. M</au><au>MACEY, R. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of the erythrocyte membrane dielectric constant by alcohols</atitle><jtitle>The Journal of membrane biology</jtitle><addtitle>J Membr Biol</addtitle><date>1988-08-01</date><risdate>1988</risdate><volume>104</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><coden>JMBBBO</coden><abstract>Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>3184178</pmid><doi>10.1007/BF01871902</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2631
ispartof The Journal of membrane biology, 1988-08, Vol.104 (1), p.57-68
issn 0022-2631
1432-1424
language eng
recordid cdi_proquest_miscellaneous_78502067
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects alcohols
Alcohols - pharmacology
Arsenicals - blood
Biological and medical sciences
Biological membranes
Butanols - pharmacology
Cell Membrane Permeability - drug effects
Cyclic N-Oxides
dielectric constant
Erythrocyte Membrane - drug effects
Erythrocyte Membrane - physiology
Fundamental and applied biological sciences. Psychology
Humans
In Vitro Techniques
Ions - blood
Lipid Bilayers - metabolism
Mathematics
Membrane Fluidity - drug effects
Membrane physicochemistry
Membrane Potentials - drug effects
Molecular biophysics
plasma membranes
Spin Labels
title Modification of the erythrocyte membrane dielectric constant by alcohols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20the%20erythrocyte%20membrane%20dielectric%20constant%20by%20alcohols&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=ORME,%20F.%20W&rft.date=1988-08-01&rft.volume=104&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=0022-2631&rft.eissn=1432-1424&rft.coden=JMBBBO&rft_id=info:doi/10.1007/BF01871902&rft_dat=%3Cproquest_cross%3E78502067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15236869&rft_id=info:pmid/3184178&rfr_iscdi=true