Modification of the erythrocyte membrane dielectric constant by alcohols
Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clau...
Gespeichert in:
Veröffentlicht in: | The Journal of membrane biology 1988-08, Vol.104 (1), p.57-68 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 68 |
---|---|
container_issue | 1 |
container_start_page | 57 |
container_title | The Journal of membrane biology |
container_volume | 104 |
creator | ORME, F. W MORONNE, M. M MACEY, R. I |
description | Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects. |
doi_str_mv | 10.1007/BF01871902 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78502067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78502067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-5f6e5b8b8b364103fef6f8aa2842960882d9aa0affc0b24f7198ecedcbcbdf903</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EKqWwsCN5QAxIgfNHbGeEilKkIhaYI8ex1aAkBtsd8u8JalRGdMMN76NXdw9ClwTuCIC8f1wBUZIUQI_QnHBGM8IpP0ZzAEozKhg5RWcxfgIQKQWfoRkjihOp5mj96uvGNUanxvfYO5y2FtswpG3wZkgWd7argu4trhvbWpNCY7DxfUy6T7gasG6N3_o2nqMTp9toL6a9QB-rp_flOtu8Pb8sHzaZYZymLHfC5pUahwlOgDnrhFNaU8VpIUApWhdag3bOQEW5G79S1tjaVKaqXQFsgW72vV_Bf-9sTGXXRGPbdrzR72IpVQ4UhPwXJDllQoliBG_3oAk-xmBd-RWaToehJFD--i3__I7w1dS6qzpbH9BJ6JhfT7mORrduVGeaeMAkMMUKwn4A6FqCbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15236869</pqid></control><display><type>article</type><title>Modification of the erythrocyte membrane dielectric constant by alcohols</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>ORME, F. W ; MORONNE, M. M ; MACEY, R. I</creator><creatorcontrib>ORME, F. W ; MORONNE, M. M ; MACEY, R. I</creatorcontrib><description>Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/BF01871902</identifier><identifier>PMID: 3184178</identifier><identifier>CODEN: JMBBBO</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>alcohols ; Alcohols - pharmacology ; Arsenicals - blood ; Biological and medical sciences ; Biological membranes ; Butanols - pharmacology ; Cell Membrane Permeability - drug effects ; Cyclic N-Oxides ; dielectric constant ; Erythrocyte Membrane - drug effects ; Erythrocyte Membrane - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; In Vitro Techniques ; Ions - blood ; Lipid Bilayers - metabolism ; Mathematics ; Membrane Fluidity - drug effects ; Membrane physicochemistry ; Membrane Potentials - drug effects ; Molecular biophysics ; plasma membranes ; Spin Labels</subject><ispartof>The Journal of membrane biology, 1988-08, Vol.104 (1), p.57-68</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-5f6e5b8b8b364103fef6f8aa2842960882d9aa0affc0b24f7198ecedcbcbdf903</citedby><cites>FETCH-LOGICAL-c342t-5f6e5b8b8b364103fef6f8aa2842960882d9aa0affc0b24f7198ecedcbcbdf903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7038391$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3184178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ORME, F. W</creatorcontrib><creatorcontrib>MORONNE, M. M</creatorcontrib><creatorcontrib>MACEY, R. I</creatorcontrib><title>Modification of the erythrocyte membrane dielectric constant by alcohols</title><title>The Journal of membrane biology</title><addtitle>J Membr Biol</addtitle><description>Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.</description><subject>alcohols</subject><subject>Alcohols - pharmacology</subject><subject>Arsenicals - blood</subject><subject>Biological and medical sciences</subject><subject>Biological membranes</subject><subject>Butanols - pharmacology</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cyclic N-Oxides</subject><subject>dielectric constant</subject><subject>Erythrocyte Membrane - drug effects</subject><subject>Erythrocyte Membrane - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Ions - blood</subject><subject>Lipid Bilayers - metabolism</subject><subject>Mathematics</subject><subject>Membrane Fluidity - drug effects</subject><subject>Membrane physicochemistry</subject><subject>Membrane Potentials - drug effects</subject><subject>Molecular biophysics</subject><subject>plasma membranes</subject><subject>Spin Labels</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EKqWwsCN5QAxIgfNHbGeEilKkIhaYI8ex1aAkBtsd8u8JalRGdMMN76NXdw9ClwTuCIC8f1wBUZIUQI_QnHBGM8IpP0ZzAEozKhg5RWcxfgIQKQWfoRkjihOp5mj96uvGNUanxvfYO5y2FtswpG3wZkgWd7argu4trhvbWpNCY7DxfUy6T7gasG6N3_o2nqMTp9toL6a9QB-rp_flOtu8Pb8sHzaZYZymLHfC5pUahwlOgDnrhFNaU8VpIUApWhdag3bOQEW5G79S1tjaVKaqXQFsgW72vV_Bf-9sTGXXRGPbdrzR72IpVQ4UhPwXJDllQoliBG_3oAk-xmBd-RWaToehJFD--i3__I7w1dS6qzpbH9BJ6JhfT7mORrduVGeaeMAkMMUKwn4A6FqCbg</recordid><startdate>19880801</startdate><enddate>19880801</enddate><creator>ORME, F. W</creator><creator>MORONNE, M. M</creator><creator>MACEY, R. I</creator><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19880801</creationdate><title>Modification of the erythrocyte membrane dielectric constant by alcohols</title><author>ORME, F. W ; MORONNE, M. M ; MACEY, R. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-5f6e5b8b8b364103fef6f8aa2842960882d9aa0affc0b24f7198ecedcbcbdf903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>alcohols</topic><topic>Alcohols - pharmacology</topic><topic>Arsenicals - blood</topic><topic>Biological and medical sciences</topic><topic>Biological membranes</topic><topic>Butanols - pharmacology</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cyclic N-Oxides</topic><topic>dielectric constant</topic><topic>Erythrocyte Membrane - drug effects</topic><topic>Erythrocyte Membrane - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Ions - blood</topic><topic>Lipid Bilayers - metabolism</topic><topic>Mathematics</topic><topic>Membrane Fluidity - drug effects</topic><topic>Membrane physicochemistry</topic><topic>Membrane Potentials - drug effects</topic><topic>Molecular biophysics</topic><topic>plasma membranes</topic><topic>Spin Labels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ORME, F. W</creatorcontrib><creatorcontrib>MORONNE, M. M</creatorcontrib><creatorcontrib>MACEY, R. I</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ORME, F. W</au><au>MORONNE, M. M</au><au>MACEY, R. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of the erythrocyte membrane dielectric constant by alcohols</atitle><jtitle>The Journal of membrane biology</jtitle><addtitle>J Membr Biol</addtitle><date>1988-08-01</date><risdate>1988</risdate><volume>104</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><coden>JMBBBO</coden><abstract>Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>3184178</pmid><doi>10.1007/BF01871902</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2631 |
ispartof | The Journal of membrane biology, 1988-08, Vol.104 (1), p.57-68 |
issn | 0022-2631 1432-1424 |
language | eng |
recordid | cdi_proquest_miscellaneous_78502067 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | alcohols Alcohols - pharmacology Arsenicals - blood Biological and medical sciences Biological membranes Butanols - pharmacology Cell Membrane Permeability - drug effects Cyclic N-Oxides dielectric constant Erythrocyte Membrane - drug effects Erythrocyte Membrane - physiology Fundamental and applied biological sciences. Psychology Humans In Vitro Techniques Ions - blood Lipid Bilayers - metabolism Mathematics Membrane Fluidity - drug effects Membrane physicochemistry Membrane Potentials - drug effects Molecular biophysics plasma membranes Spin Labels |
title | Modification of the erythrocyte membrane dielectric constant by alcohols |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20the%20erythrocyte%20membrane%20dielectric%20constant%20by%20alcohols&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=ORME,%20F.%20W&rft.date=1988-08-01&rft.volume=104&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=0022-2631&rft.eissn=1432-1424&rft.coden=JMBBBO&rft_id=info:doi/10.1007/BF01871902&rft_dat=%3Cproquest_cross%3E78502067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15236869&rft_id=info:pmid/3184178&rfr_iscdi=true |