Skin blood flow disturbances in the contralateral limb in a peripheral mononeuropathy in the rat

Electrical excitation of nociceptive afferents in an extremity has been demonstrated to increase skin blood flow in the contralateral extremity. Hence, one would expect that loose sciatic nerve ligation, which induces an experimental painful peripheral neuropathy, may also provoke a vasodilator resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 1996-10, Vol.74 (3), p.935-943
Hauptverfasser: Kurvers, H.A.J.M, Tangelder, G.J, De Mey, J.G.R, Slaaf, D.W, van den Wildenberg, F.A.J.M, Kitslaar, P.J.E.H.M, Reneman, R.S, Rouwet, E.V, Jacobs, M.J.H.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical excitation of nociceptive afferents in an extremity has been demonstrated to increase skin blood flow in the contralateral extremity. Hence, one would expect that loose sciatic nerve ligation, which induces an experimental painful peripheral neuropathy, may also provoke a vasodilator response in the contralateral hindpaw. On the non-ligated side, such a response may involve inhibited skin vasoconstrictor activity as well as neurogenically mediated active vasodilation. We studied skin blood flow changes in the rat hindpaw consequent to contralateral loose sciatic nerve ligation. After ligation, we also investigated whether blockade of afferent input from the ligated sciatic nerve to the spinal cord, by means of lidocaine, overrules the vasodilator response in the non-ligated paw. On the non-ligated side, we assessed the vasoconstrictor response of skin microvessels to cooling of the rat abdomen as a measure of skin vasoconstrictor activity in this paw. In order to investigate the involvement of sensory and/or non-sensory nerve fibers in the non-ligated sciatic nerve on skin blood flow abnormalities in the non-ligated paw, we studied the influence of blockade of these fibers through successive capsaicin and lidocaine application. We show that loose ligation of the sciatic nerve induces a vasodilator response in the contralateral hindpaw, which is completely abolished by blockade of afferent input from the ligated sciatic nerve. From day 1 after ligation, skin vasoconstrictor activity in the non-ligated paw was reduced, as indicated by an impaired vasoconstrictor response to cooling of the rat abdomen. Beside, blockade of sensory but not of non-sensory nerve fibers on the non-ligated side attenuated the vasodilator response in this paw. The data presented here indicate that loose ligation of the rat sciatic nerve induces a vasodilator response in the contralateral hindpaw. On the non-ligated side, this vasodilator response may involve inhibition of skin vasoconstrictor activity, as well as antidromically acting sensory nerve fibers.
ISSN:0306-4522
1873-7544
DOI:10.1016/0306-4522(96)00178-9