The intrinsic curvature of DNA in solution
We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1988-05, Vol.201 (1), p.127-137 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 1 |
container_start_page | 127 |
container_title | Journal of molecular biology |
container_volume | 201 |
creator | Calladine, C.R. Drew, H.R. McCall, M.J. |
description | We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because it can only pass through larger holes. The retardation is maximal when the length of the DNA reaches one superhelical turn, but is less for shorter pieces. We attribute the curvature of the superhelix to different angles of roll at each kind of dinucleotide step, i.e. an opening up of an angle by an increased separation on the minor-groove side. The main effect is due to a difference of about 3 ° in roll values between
AA
TT
and other steps, together with a difference of about 1 ° in the angle of helical twist: we deduce these values explicitly from some of the available data on gelrunning. The scheme involves a simple calculation of the superhelical parameters for any given repeating sequence, and it gives a good correlation with all of the available data. We argue that these same base-step angular parameters are also consistent with observations from X-ray diffraction of crystallized oligomers, and particularly with the recent data on CGCA
6GCG from Nelson
et al. We are concerned here with the intrinsic curvature of unconstrained DNA, as distinct from the curvature of DNA in association with protein molecules; and this paper represents a first attempt at an absolute determination. |
doi_str_mv | 10.1016/0022-2836(88)90444-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78411194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022283688904445</els_id><sourcerecordid>15083334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-610d7b3289be459de4caefc33e30764125a7a175e429168e2d173195f29f07b3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMo43h5A4UuRFSo5uTSJBtBvMOgm9mHTHqKkU6rSSv49rbOMEuFA1n8339O-Ag5AnoJFIorShnLmebFmdbnhgohcrlFpkC1yXXB9TaZbpBdspfSO6VUcqEnZMIF6MLIKbmYv2EWmi6GJgWf-T5-ua6PmLVVdvdyM0RZauu-C21zQHYqVyc8XL_7ZP5wP799ymevj8-3N7PcC1BdXgAt1YIzbRYopClReIeV5xw5VYUAJp1yoCQKZqDQyEpQHIysmKnoUNwnp6u1H7H97DF1dhmSx7p2DbZ9skoLADDiXxAk1ZzzERQr0Mc2pYiV_Yhh6eK3BWpHlXb0ZEdPVmv7q9LKoXa83t8vllhuSmt3Q36yzl3yrq6ia3xIG0wpNsx4_XqF4eDsK2C0yQdsPJYhou9s2Ya___EDi-2Mdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15083334</pqid></control><display><type>article</type><title>The intrinsic curvature of DNA in solution</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Calladine, C.R. ; Drew, H.R. ; McCall, M.J.</creator><creatorcontrib>Calladine, C.R. ; Drew, H.R. ; McCall, M.J.</creatorcontrib><description>We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because it can only pass through larger holes. The retardation is maximal when the length of the DNA reaches one superhelical turn, but is less for shorter pieces. We attribute the curvature of the superhelix to different angles of roll at each kind of dinucleotide step, i.e. an opening up of an angle by an increased separation on the minor-groove side. The main effect is due to a difference of about 3 ° in roll values between
AA
TT
and other steps, together with a difference of about 1 ° in the angle of helical twist: we deduce these values explicitly from some of the available data on gelrunning. The scheme involves a simple calculation of the superhelical parameters for any given repeating sequence, and it gives a good correlation with all of the available data. We argue that these same base-step angular parameters are also consistent with observations from X-ray diffraction of crystallized oligomers, and particularly with the recent data on CGCA
6GCG from Nelson
et al. We are concerned here with the intrinsic curvature of unconstrained DNA, as distinct from the curvature of DNA in association with protein molecules; and this paper represents a first attempt at an absolute determination.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/0022-2836(88)90444-5</identifier><identifier>PMID: 3418695</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adenine ; Base Sequence ; Biological and medical sciences ; DNA ; DNA, Superhelical ; Electrophoresis, Polyacrylamide Gel ; Fundamental and applied biological sciences. Psychology ; Molecular biophysics ; Nucleic Acid Conformation ; Physico-chemical properties of biomolecules ; Repetitive Sequences, Nucleic Acid ; Solutions ; Thymine</subject><ispartof>Journal of molecular biology, 1988-05, Vol.201 (1), p.127-137</ispartof><rights>1988</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-610d7b3289be459de4caefc33e30764125a7a175e429168e2d173195f29f07b3</citedby><cites>FETCH-LOGICAL-c417t-610d7b3289be459de4caefc33e30764125a7a175e429168e2d173195f29f07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0022-2836(88)90444-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7727724$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3418695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calladine, C.R.</creatorcontrib><creatorcontrib>Drew, H.R.</creatorcontrib><creatorcontrib>McCall, M.J.</creatorcontrib><title>The intrinsic curvature of DNA in solution</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because it can only pass through larger holes. The retardation is maximal when the length of the DNA reaches one superhelical turn, but is less for shorter pieces. We attribute the curvature of the superhelix to different angles of roll at each kind of dinucleotide step, i.e. an opening up of an angle by an increased separation on the minor-groove side. The main effect is due to a difference of about 3 ° in roll values between
AA
TT
and other steps, together with a difference of about 1 ° in the angle of helical twist: we deduce these values explicitly from some of the available data on gelrunning. The scheme involves a simple calculation of the superhelical parameters for any given repeating sequence, and it gives a good correlation with all of the available data. We argue that these same base-step angular parameters are also consistent with observations from X-ray diffraction of crystallized oligomers, and particularly with the recent data on CGCA
6GCG from Nelson
et al. We are concerned here with the intrinsic curvature of unconstrained DNA, as distinct from the curvature of DNA in association with protein molecules; and this paper represents a first attempt at an absolute determination.</description><subject>Adenine</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>DNA</subject><subject>DNA, Superhelical</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Molecular biophysics</subject><subject>Nucleic Acid Conformation</subject><subject>Physico-chemical properties of biomolecules</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Solutions</subject><subject>Thymine</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUhoMo43h5A4UuRFSo5uTSJBtBvMOgm9mHTHqKkU6rSSv49rbOMEuFA1n8339O-Ag5AnoJFIorShnLmebFmdbnhgohcrlFpkC1yXXB9TaZbpBdspfSO6VUcqEnZMIF6MLIKbmYv2EWmi6GJgWf-T5-ua6PmLVVdvdyM0RZauu-C21zQHYqVyc8XL_7ZP5wP799ymevj8-3N7PcC1BdXgAt1YIzbRYopClReIeV5xw5VYUAJp1yoCQKZqDQyEpQHIysmKnoUNwnp6u1H7H97DF1dhmSx7p2DbZ9skoLADDiXxAk1ZzzERQr0Mc2pYiV_Yhh6eK3BWpHlXb0ZEdPVmv7q9LKoXa83t8vllhuSmt3Q36yzl3yrq6ia3xIG0wpNsx4_XqF4eDsK2C0yQdsPJYhou9s2Ya___EDi-2Mdg</recordid><startdate>19880505</startdate><enddate>19880505</enddate><creator>Calladine, C.R.</creator><creator>Drew, H.R.</creator><creator>McCall, M.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>19880505</creationdate><title>The intrinsic curvature of DNA in solution</title><author>Calladine, C.R. ; Drew, H.R. ; McCall, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-610d7b3289be459de4caefc33e30764125a7a175e429168e2d173195f29f07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Adenine</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>DNA</topic><topic>DNA, Superhelical</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Molecular biophysics</topic><topic>Nucleic Acid Conformation</topic><topic>Physico-chemical properties of biomolecules</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Solutions</topic><topic>Thymine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calladine, C.R.</creatorcontrib><creatorcontrib>Drew, H.R.</creatorcontrib><creatorcontrib>McCall, M.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calladine, C.R.</au><au>Drew, H.R.</au><au>McCall, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The intrinsic curvature of DNA in solution</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1988-05-05</date><risdate>1988</risdate><volume>201</volume><issue>1</issue><spage>127</spage><epage>137</epage><pages>127-137</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because it can only pass through larger holes. The retardation is maximal when the length of the DNA reaches one superhelical turn, but is less for shorter pieces. We attribute the curvature of the superhelix to different angles of roll at each kind of dinucleotide step, i.e. an opening up of an angle by an increased separation on the minor-groove side. The main effect is due to a difference of about 3 ° in roll values between
AA
TT
and other steps, together with a difference of about 1 ° in the angle of helical twist: we deduce these values explicitly from some of the available data on gelrunning. The scheme involves a simple calculation of the superhelical parameters for any given repeating sequence, and it gives a good correlation with all of the available data. We argue that these same base-step angular parameters are also consistent with observations from X-ray diffraction of crystallized oligomers, and particularly with the recent data on CGCA
6GCG from Nelson
et al. We are concerned here with the intrinsic curvature of unconstrained DNA, as distinct from the curvature of DNA in association with protein molecules; and this paper represents a first attempt at an absolute determination.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>3418695</pmid><doi>10.1016/0022-2836(88)90444-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 1988-05, Vol.201 (1), p.127-137 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_78411194 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adenine Base Sequence Biological and medical sciences DNA DNA, Superhelical Electrophoresis, Polyacrylamide Gel Fundamental and applied biological sciences. Psychology Molecular biophysics Nucleic Acid Conformation Physico-chemical properties of biomolecules Repetitive Sequences, Nucleic Acid Solutions Thymine |
title | The intrinsic curvature of DNA in solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20intrinsic%20curvature%20of%20DNA%20in%20solution&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Calladine,%20C.R.&rft.date=1988-05-05&rft.volume=201&rft.issue=1&rft.spage=127&rft.epage=137&rft.pages=127-137&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1016/0022-2836(88)90444-5&rft_dat=%3Cproquest_cross%3E15083334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15083334&rft_id=info:pmid/3418695&rft_els_id=0022283688904445&rfr_iscdi=true |