The intrinsic curvature of DNA in solution

We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1988-05, Vol.201 (1), p.127-137
Hauptverfasser: Calladine, C.R., Drew, H.R., McCall, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 1
container_start_page 127
container_title Journal of molecular biology
container_volume 201
creator Calladine, C.R.
Drew, H.R.
McCall, M.J.
description We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because it can only pass through larger holes. The retardation is maximal when the length of the DNA reaches one superhelical turn, but is less for shorter pieces. We attribute the curvature of the superhelix to different angles of roll at each kind of dinucleotide step, i.e. an opening up of an angle by an increased separation on the minor-groove side. The main effect is due to a difference of about 3 ° in roll values between AA TT and other steps, together with a difference of about 1 ° in the angle of helical twist: we deduce these values explicitly from some of the available data on gelrunning. The scheme involves a simple calculation of the superhelical parameters for any given repeating sequence, and it gives a good correlation with all of the available data. We argue that these same base-step angular parameters are also consistent with observations from X-ray diffraction of crystallized oligomers, and particularly with the recent data on CGCA 6GCG from Nelson et al. We are concerned here with the intrinsic curvature of unconstrained DNA, as distinct from the curvature of DNA in association with protein molecules; and this paper represents a first attempt at an absolute determination.
doi_str_mv 10.1016/0022-2836(88)90444-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78411194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022283688904445</els_id><sourcerecordid>15083334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-610d7b3289be459de4caefc33e30764125a7a175e429168e2d173195f29f07b3</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMo43h5A4UuRFSo5uTSJBtBvMOgm9mHTHqKkU6rSSv49rbOMEuFA1n8339O-Ag5AnoJFIorShnLmebFmdbnhgohcrlFpkC1yXXB9TaZbpBdspfSO6VUcqEnZMIF6MLIKbmYv2EWmi6GJgWf-T5-ua6PmLVVdvdyM0RZauu-C21zQHYqVyc8XL_7ZP5wP799ymevj8-3N7PcC1BdXgAt1YIzbRYopClReIeV5xw5VYUAJp1yoCQKZqDQyEpQHIysmKnoUNwnp6u1H7H97DF1dhmSx7p2DbZ9skoLADDiXxAk1ZzzERQr0Mc2pYiV_Yhh6eK3BWpHlXb0ZEdPVmv7q9LKoXa83t8vllhuSmt3Q36yzl3yrq6ia3xIG0wpNsx4_XqF4eDsK2C0yQdsPJYhou9s2Ya___EDi-2Mdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15083334</pqid></control><display><type>article</type><title>The intrinsic curvature of DNA in solution</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Calladine, C.R. ; Drew, H.R. ; McCall, M.J.</creator><creatorcontrib>Calladine, C.R. ; Drew, H.R. ; McCall, M.J.</creatorcontrib><description>We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because it can only pass through larger holes. The retardation is maximal when the length of the DNA reaches one superhelical turn, but is less for shorter pieces. We attribute the curvature of the superhelix to different angles of roll at each kind of dinucleotide step, i.e. an opening up of an angle by an increased separation on the minor-groove side. The main effect is due to a difference of about 3 ° in roll values between AA TT and other steps, together with a difference of about 1 ° in the angle of helical twist: we deduce these values explicitly from some of the available data on gelrunning. The scheme involves a simple calculation of the superhelical parameters for any given repeating sequence, and it gives a good correlation with all of the available data. We argue that these same base-step angular parameters are also consistent with observations from X-ray diffraction of crystallized oligomers, and particularly with the recent data on CGCA 6GCG from Nelson et al. We are concerned here with the intrinsic curvature of unconstrained DNA, as distinct from the curvature of DNA in association with protein molecules; and this paper represents a first attempt at an absolute determination.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/0022-2836(88)90444-5</identifier><identifier>PMID: 3418695</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adenine ; Base Sequence ; Biological and medical sciences ; DNA ; DNA, Superhelical ; Electrophoresis, Polyacrylamide Gel ; Fundamental and applied biological sciences. Psychology ; Molecular biophysics ; Nucleic Acid Conformation ; Physico-chemical properties of biomolecules ; Repetitive Sequences, Nucleic Acid ; Solutions ; Thymine</subject><ispartof>Journal of molecular biology, 1988-05, Vol.201 (1), p.127-137</ispartof><rights>1988</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-610d7b3289be459de4caefc33e30764125a7a175e429168e2d173195f29f07b3</citedby><cites>FETCH-LOGICAL-c417t-610d7b3289be459de4caefc33e30764125a7a175e429168e2d173195f29f07b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0022-2836(88)90444-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7727724$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3418695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calladine, C.R.</creatorcontrib><creatorcontrib>Drew, H.R.</creatorcontrib><creatorcontrib>McCall, M.J.</creatorcontrib><title>The intrinsic curvature of DNA in solution</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because it can only pass through larger holes. The retardation is maximal when the length of the DNA reaches one superhelical turn, but is less for shorter pieces. We attribute the curvature of the superhelix to different angles of roll at each kind of dinucleotide step, i.e. an opening up of an angle by an increased separation on the minor-groove side. The main effect is due to a difference of about 3 ° in roll values between AA TT and other steps, together with a difference of about 1 ° in the angle of helical twist: we deduce these values explicitly from some of the available data on gelrunning. The scheme involves a simple calculation of the superhelical parameters for any given repeating sequence, and it gives a good correlation with all of the available data. We argue that these same base-step angular parameters are also consistent with observations from X-ray diffraction of crystallized oligomers, and particularly with the recent data on CGCA 6GCG from Nelson et al. We are concerned here with the intrinsic curvature of unconstrained DNA, as distinct from the curvature of DNA in association with protein molecules; and this paper represents a first attempt at an absolute determination.</description><subject>Adenine</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>DNA</subject><subject>DNA, Superhelical</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Molecular biophysics</subject><subject>Nucleic Acid Conformation</subject><subject>Physico-chemical properties of biomolecules</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Solutions</subject><subject>Thymine</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtKxDAUhoMo43h5A4UuRFSo5uTSJBtBvMOgm9mHTHqKkU6rSSv49rbOMEuFA1n8339O-Ag5AnoJFIorShnLmebFmdbnhgohcrlFpkC1yXXB9TaZbpBdspfSO6VUcqEnZMIF6MLIKbmYv2EWmi6GJgWf-T5-ua6PmLVVdvdyM0RZauu-C21zQHYqVyc8XL_7ZP5wP799ymevj8-3N7PcC1BdXgAt1YIzbRYopClReIeV5xw5VYUAJp1yoCQKZqDQyEpQHIysmKnoUNwnp6u1H7H97DF1dhmSx7p2DbZ9skoLADDiXxAk1ZzzERQr0Mc2pYiV_Yhh6eK3BWpHlXb0ZEdPVmv7q9LKoXa83t8vllhuSmt3Q36yzl3yrq6ia3xIG0wpNsx4_XqF4eDsK2C0yQdsPJYhou9s2Ya___EDi-2Mdg</recordid><startdate>19880505</startdate><enddate>19880505</enddate><creator>Calladine, C.R.</creator><creator>Drew, H.R.</creator><creator>McCall, M.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>19880505</creationdate><title>The intrinsic curvature of DNA in solution</title><author>Calladine, C.R. ; Drew, H.R. ; McCall, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-610d7b3289be459de4caefc33e30764125a7a175e429168e2d173195f29f07b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Adenine</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>DNA</topic><topic>DNA, Superhelical</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Molecular biophysics</topic><topic>Nucleic Acid Conformation</topic><topic>Physico-chemical properties of biomolecules</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Solutions</topic><topic>Thymine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calladine, C.R.</creatorcontrib><creatorcontrib>Drew, H.R.</creatorcontrib><creatorcontrib>McCall, M.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calladine, C.R.</au><au>Drew, H.R.</au><au>McCall, M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The intrinsic curvature of DNA in solution</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1988-05-05</date><risdate>1988</risdate><volume>201</volume><issue>1</issue><spage>127</spage><epage>137</epage><pages>127-137</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>We propose a detailed quantitative scheme for explaining the anomalous electrophoretic mobility in polyacrylamide gels of repeating sequence DNA. We assume that such DNA adopts a superhelical configuration in these circumstances, and migrates less quickly than straight DNA of the same length because it can only pass through larger holes. The retardation is maximal when the length of the DNA reaches one superhelical turn, but is less for shorter pieces. We attribute the curvature of the superhelix to different angles of roll at each kind of dinucleotide step, i.e. an opening up of an angle by an increased separation on the minor-groove side. The main effect is due to a difference of about 3 ° in roll values between AA TT and other steps, together with a difference of about 1 ° in the angle of helical twist: we deduce these values explicitly from some of the available data on gelrunning. The scheme involves a simple calculation of the superhelical parameters for any given repeating sequence, and it gives a good correlation with all of the available data. We argue that these same base-step angular parameters are also consistent with observations from X-ray diffraction of crystallized oligomers, and particularly with the recent data on CGCA 6GCG from Nelson et al. We are concerned here with the intrinsic curvature of unconstrained DNA, as distinct from the curvature of DNA in association with protein molecules; and this paper represents a first attempt at an absolute determination.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>3418695</pmid><doi>10.1016/0022-2836(88)90444-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 1988-05, Vol.201 (1), p.127-137
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_78411194
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adenine
Base Sequence
Biological and medical sciences
DNA
DNA, Superhelical
Electrophoresis, Polyacrylamide Gel
Fundamental and applied biological sciences. Psychology
Molecular biophysics
Nucleic Acid Conformation
Physico-chemical properties of biomolecules
Repetitive Sequences, Nucleic Acid
Solutions
Thymine
title The intrinsic curvature of DNA in solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20intrinsic%20curvature%20of%20DNA%20in%20solution&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Calladine,%20C.R.&rft.date=1988-05-05&rft.volume=201&rft.issue=1&rft.spage=127&rft.epage=137&rft.pages=127-137&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1016/0022-2836(88)90444-5&rft_dat=%3Cproquest_cross%3E15083334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15083334&rft_id=info:pmid/3418695&rft_els_id=0022283688904445&rfr_iscdi=true