Fluorometric detection of the bilayer-to-hexagonal phase transition in liposomes

We have used the fluorescent probe N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE) to detect the bilayer-to-hexagonal phase transition. The fluorescence intensity of the probe was found to increase during the bilayer-to-hexagonal transition. The bilayer-to-hexagonal transitions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1988-05, Vol.27 (11), p.3947-3955
Hauptverfasser: Hong, Keelung, Baldwin, Patricia A, Allen, Theresa M, Papahadjopoulos, Demetrios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have used the fluorescent probe N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE) to detect the bilayer-to-hexagonal phase transition. The fluorescence intensity of the probe was found to increase during the bilayer-to-hexagonal transition. The bilayer-to-hexagonal transitions of various types of phosphatidylethanolamine or cardiolipin measured by this method are consistent with results obtained by differential scanning calorimetry. To establish this method for wider use, agents known to alter the bilayer-to-hexagonal transition were examined, and the results are comparable with the published data. The added advantage of this fluorometric method over other currently available techniques is that it is applicable not only for aggregated lipid samples but also for dilute liposome suspensions. This is especially important when one of the components of the system under study can partition between lipid and aqueous phase. Since NBD is located near the headgroup region of the bilayer, it most likely detects the change of the environment surrounding that region. On the basis of our present study, it appears that NBD-PE is sufficiently sensitive to detect bilayer-to-hexagonal phase transition.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00411a009