The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations
Background: Members of the structurally-related superfamily of enzymes that includes RNase H, RuvC resolvase, MuA transposase, and retroviral integrase require divalent cations for enzymatic activity. So far, cation positions are reported in the X-ray crystal structures of only two of these proteins...
Gespeichert in:
Veröffentlicht in: | Structure (London) 1996, Vol.4 (1), p.89-96 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 96 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | Structure (London) |
container_volume | 4 |
creator | Bujacz, Grzegorz Jaskólski, Mariusz Alexandratos, Jerry Wlodawer, Alexander Merkel, George Katz, Richard A Skalka, Anna Marie |
description | Background: Members of the structurally-related superfamily of enzymes that includes RNase H, RuvC resolvase, MuA transposase, and retroviral integrase require divalent cations for enzymatic activity. So far, cation positions are reported in the X-ray crystal structures of only two of these proteins,
E. coli and human immunodeficiency virus 1 (HIV-1) RNase H. Details of the placement of metal ions in the active site of retroviral integrases are necessary for the understanding of the catalytic mechanism of these enzymes.
Results The structure of the enzymatically active catalytic domain (residues 52–207) of avian sarcoma virus integrase (ASV IN) has been solved in the presence of divalent cations (Mn
2+ or Mg
2+), at 1.7–2.2 å resolution. A single ion of either type interacts with the carboxylate groups of the active site aspartates and uses four water molecules to complete its octahedral coordination. The placement of the aspartate side chains and metal ions is very similar to that observed in the RNase H members of this superfamily; however, the conformation of the catalytic aspartates in the active site of ASV IN differs significantly from that reported for the analogous residues in HIV-1 IN.
Conclusion Binding of the required metal ions does not lead to significant structural modifications in the active site of the catalytic domain of ASV IN. This indicates that at least one metal-binding site is preformed in the structure, and suggests that the observed constellation of the acidic residues represents a catalytically competent active site. Only a single divalent cation was observed even at extremely high concentrations of the metals. We conclude that either only one metal ion is needed for catalysis, or that a second metal-binding site can only exist in the presence of substrate and/or other domains of the protein. The unexpected differences between the active sites of ASV IN and HIV-1 IN remain unexplained; they may reflect the effects of crystal contacts on the active site of HIV-1 IN, or a tendency for structural polymorphism. |
doi_str_mv | 10.1016/S0969-2126(96)00012-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78366975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212696000123</els_id><sourcerecordid>78366975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-8a619945c7d13442d5e1767ab6ce438717f1158301c7e821cb80382b6f333423</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVpSTfb_oSATiE9ONFYtiTnEkJok0Agh-xdaOVxq2JbW0k27Ll_vPLukmtPgnnvzRt9hFwAuwYG4uaNNaIpSijFVSO-McagLPgHsgIlVVGBEh_J6t3ymZzH-DubypqxM3KmFKtrECvyd_MLqTXJ9PvkLG39YNxIfUfN7MxIowk2j-jswhSpGxP-DCbiLbV-7HwYTHL-YE95jbHJzVhEl5AGjK6dcMkctF0e4Ghx8bZuNj2OaenN8fiFfOpMH_Hr6V2TzY_vm4en4uX18fnh_qWwleSpUEZA01S1lS3wqirbGkEKabbCYsWVBNkB1IozsBJVCXarGFflVnSc86rka3J5XLsL_k8-LenBRYt9b0b0U9RScSEaWWdjfTTa4GMM2OldcIMJew1ML-z1gb1ewOpG6AN7zXPu4lQwbQds31Mn2Fm_O-qYPzk7DDpat0BpXUCbdOvdfxr-AUCslJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78366975</pqid></control><display><type>article</type><title>The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Bujacz, Grzegorz ; Jaskólski, Mariusz ; Alexandratos, Jerry ; Wlodawer, Alexander ; Merkel, George ; Katz, Richard A ; Skalka, Anna Marie</creator><creatorcontrib>Bujacz, Grzegorz ; Jaskólski, Mariusz ; Alexandratos, Jerry ; Wlodawer, Alexander ; Merkel, George ; Katz, Richard A ; Skalka, Anna Marie</creatorcontrib><description>Background: Members of the structurally-related superfamily of enzymes that includes RNase H, RuvC resolvase, MuA transposase, and retroviral integrase require divalent cations for enzymatic activity. So far, cation positions are reported in the X-ray crystal structures of only two of these proteins,
E. coli and human immunodeficiency virus 1 (HIV-1) RNase H. Details of the placement of metal ions in the active site of retroviral integrases are necessary for the understanding of the catalytic mechanism of these enzymes.
Results The structure of the enzymatically active catalytic domain (residues 52–207) of avian sarcoma virus integrase (ASV IN) has been solved in the presence of divalent cations (Mn
2+ or Mg
2+), at 1.7–2.2 å resolution. A single ion of either type interacts with the carboxylate groups of the active site aspartates and uses four water molecules to complete its octahedral coordination. The placement of the aspartate side chains and metal ions is very similar to that observed in the RNase H members of this superfamily; however, the conformation of the catalytic aspartates in the active site of ASV IN differs significantly from that reported for the analogous residues in HIV-1 IN.
Conclusion Binding of the required metal ions does not lead to significant structural modifications in the active site of the catalytic domain of ASV IN. This indicates that at least one metal-binding site is preformed in the structure, and suggests that the observed constellation of the acidic residues represents a catalytically competent active site. Only a single divalent cation was observed even at extremely high concentrations of the metals. We conclude that either only one metal ion is needed for catalysis, or that a second metal-binding site can only exist in the presence of substrate and/or other domains of the protein. The unexpected differences between the active sites of ASV IN and HIV-1 IN remain unexplained; they may reflect the effects of crystal contacts on the active site of HIV-1 IN, or a tendency for structural polymorphism.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/S0969-2126(96)00012-3</identifier><identifier>PMID: 8805516</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AIDS ; AIDS/HIV ; ASV ; Avian Sarcoma Viruses - enzymology ; Binding Sites ; Crystallography, X-Ray ; Escherichia coli - enzymology ; HIV ; HIV-1 - enzymology ; Integrases - chemistry ; integration ; Magnesium - chemistry ; Magnesium - metabolism ; Manganese - chemistry ; Manganese - metabolism ; Models, Molecular ; Molecular Conformation ; recombination ; Ribonucleases - chemistry</subject><ispartof>Structure (London), 1996, Vol.4 (1), p.89-96</ispartof><rights>1996 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-8a619945c7d13442d5e1767ab6ce438717f1158301c7e821cb80382b6f333423</citedby><cites>FETCH-LOGICAL-c473t-8a619945c7d13442d5e1767ab6ce438717f1158301c7e821cb80382b6f333423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0969-2126(96)00012-3$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,4012,27910,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8805516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bujacz, Grzegorz</creatorcontrib><creatorcontrib>Jaskólski, Mariusz</creatorcontrib><creatorcontrib>Alexandratos, Jerry</creatorcontrib><creatorcontrib>Wlodawer, Alexander</creatorcontrib><creatorcontrib>Merkel, George</creatorcontrib><creatorcontrib>Katz, Richard A</creatorcontrib><creatorcontrib>Skalka, Anna Marie</creatorcontrib><title>The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Background: Members of the structurally-related superfamily of enzymes that includes RNase H, RuvC resolvase, MuA transposase, and retroviral integrase require divalent cations for enzymatic activity. So far, cation positions are reported in the X-ray crystal structures of only two of these proteins,
E. coli and human immunodeficiency virus 1 (HIV-1) RNase H. Details of the placement of metal ions in the active site of retroviral integrases are necessary for the understanding of the catalytic mechanism of these enzymes.
Results The structure of the enzymatically active catalytic domain (residues 52–207) of avian sarcoma virus integrase (ASV IN) has been solved in the presence of divalent cations (Mn
2+ or Mg
2+), at 1.7–2.2 å resolution. A single ion of either type interacts with the carboxylate groups of the active site aspartates and uses four water molecules to complete its octahedral coordination. The placement of the aspartate side chains and metal ions is very similar to that observed in the RNase H members of this superfamily; however, the conformation of the catalytic aspartates in the active site of ASV IN differs significantly from that reported for the analogous residues in HIV-1 IN.
Conclusion Binding of the required metal ions does not lead to significant structural modifications in the active site of the catalytic domain of ASV IN. This indicates that at least one metal-binding site is preformed in the structure, and suggests that the observed constellation of the acidic residues represents a catalytically competent active site. Only a single divalent cation was observed even at extremely high concentrations of the metals. We conclude that either only one metal ion is needed for catalysis, or that a second metal-binding site can only exist in the presence of substrate and/or other domains of the protein. The unexpected differences between the active sites of ASV IN and HIV-1 IN remain unexplained; they may reflect the effects of crystal contacts on the active site of HIV-1 IN, or a tendency for structural polymorphism.</description><subject>AIDS</subject><subject>AIDS/HIV</subject><subject>ASV</subject><subject>Avian Sarcoma Viruses - enzymology</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - enzymology</subject><subject>HIV</subject><subject>HIV-1 - enzymology</subject><subject>Integrases - chemistry</subject><subject>integration</subject><subject>Magnesium - chemistry</subject><subject>Magnesium - metabolism</subject><subject>Manganese - chemistry</subject><subject>Manganese - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>recombination</subject><subject>Ribonucleases - chemistry</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFr3DAQhUVpSTfb_oSATiE9ONFYtiTnEkJok0Agh-xdaOVxq2JbW0k27Ll_vPLukmtPgnnvzRt9hFwAuwYG4uaNNaIpSijFVSO-McagLPgHsgIlVVGBEh_J6t3ymZzH-DubypqxM3KmFKtrECvyd_MLqTXJ9PvkLG39YNxIfUfN7MxIowk2j-jswhSpGxP-DCbiLbV-7HwYTHL-YE95jbHJzVhEl5AGjK6dcMkctF0e4Ghx8bZuNj2OaenN8fiFfOpMH_Hr6V2TzY_vm4en4uX18fnh_qWwleSpUEZA01S1lS3wqirbGkEKabbCYsWVBNkB1IozsBJVCXarGFflVnSc86rka3J5XLsL_k8-LenBRYt9b0b0U9RScSEaWWdjfTTa4GMM2OldcIMJew1ML-z1gb1ewOpG6AN7zXPu4lQwbQds31Mn2Fm_O-qYPzk7DDpat0BpXUCbdOvdfxr-AUCslJk</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Bujacz, Grzegorz</creator><creator>Jaskólski, Mariusz</creator><creator>Alexandratos, Jerry</creator><creator>Wlodawer, Alexander</creator><creator>Merkel, George</creator><creator>Katz, Richard A</creator><creator>Skalka, Anna Marie</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1996</creationdate><title>The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations</title><author>Bujacz, Grzegorz ; Jaskólski, Mariusz ; Alexandratos, Jerry ; Wlodawer, Alexander ; Merkel, George ; Katz, Richard A ; Skalka, Anna Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-8a619945c7d13442d5e1767ab6ce438717f1158301c7e821cb80382b6f333423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>AIDS</topic><topic>AIDS/HIV</topic><topic>ASV</topic><topic>Avian Sarcoma Viruses - enzymology</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - enzymology</topic><topic>HIV</topic><topic>HIV-1 - enzymology</topic><topic>Integrases - chemistry</topic><topic>integration</topic><topic>Magnesium - chemistry</topic><topic>Magnesium - metabolism</topic><topic>Manganese - chemistry</topic><topic>Manganese - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>recombination</topic><topic>Ribonucleases - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bujacz, Grzegorz</creatorcontrib><creatorcontrib>Jaskólski, Mariusz</creatorcontrib><creatorcontrib>Alexandratos, Jerry</creatorcontrib><creatorcontrib>Wlodawer, Alexander</creatorcontrib><creatorcontrib>Merkel, George</creatorcontrib><creatorcontrib>Katz, Richard A</creatorcontrib><creatorcontrib>Skalka, Anna Marie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bujacz, Grzegorz</au><au>Jaskólski, Mariusz</au><au>Alexandratos, Jerry</au><au>Wlodawer, Alexander</au><au>Merkel, George</au><au>Katz, Richard A</au><au>Skalka, Anna Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>1996</date><risdate>1996</risdate><volume>4</volume><issue>1</issue><spage>89</spage><epage>96</epage><pages>89-96</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Background: Members of the structurally-related superfamily of enzymes that includes RNase H, RuvC resolvase, MuA transposase, and retroviral integrase require divalent cations for enzymatic activity. So far, cation positions are reported in the X-ray crystal structures of only two of these proteins,
E. coli and human immunodeficiency virus 1 (HIV-1) RNase H. Details of the placement of metal ions in the active site of retroviral integrases are necessary for the understanding of the catalytic mechanism of these enzymes.
Results The structure of the enzymatically active catalytic domain (residues 52–207) of avian sarcoma virus integrase (ASV IN) has been solved in the presence of divalent cations (Mn
2+ or Mg
2+), at 1.7–2.2 å resolution. A single ion of either type interacts with the carboxylate groups of the active site aspartates and uses four water molecules to complete its octahedral coordination. The placement of the aspartate side chains and metal ions is very similar to that observed in the RNase H members of this superfamily; however, the conformation of the catalytic aspartates in the active site of ASV IN differs significantly from that reported for the analogous residues in HIV-1 IN.
Conclusion Binding of the required metal ions does not lead to significant structural modifications in the active site of the catalytic domain of ASV IN. This indicates that at least one metal-binding site is preformed in the structure, and suggests that the observed constellation of the acidic residues represents a catalytically competent active site. Only a single divalent cation was observed even at extremely high concentrations of the metals. We conclude that either only one metal ion is needed for catalysis, or that a second metal-binding site can only exist in the presence of substrate and/or other domains of the protein. The unexpected differences between the active sites of ASV IN and HIV-1 IN remain unexplained; they may reflect the effects of crystal contacts on the active site of HIV-1 IN, or a tendency for structural polymorphism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8805516</pmid><doi>10.1016/S0969-2126(96)00012-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 1996, Vol.4 (1), p.89-96 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_78366975 |
source | MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | AIDS AIDS/HIV ASV Avian Sarcoma Viruses - enzymology Binding Sites Crystallography, X-Ray Escherichia coli - enzymology HIV HIV-1 - enzymology Integrases - chemistry integration Magnesium - chemistry Magnesium - metabolism Manganese - chemistry Manganese - metabolism Models, Molecular Molecular Conformation recombination Ribonucleases - chemistry |
title | The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20catalytic%20domain%20of%20avian%20sarcoma%20virus%20integrase:%20conformation%20of%20the%20active-site%20residues%20in%20the%20presence%20of%20divalent%20cations&rft.jtitle=Structure%20(London)&rft.au=Bujacz,%20Grzegorz&rft.date=1996&rft.volume=4&rft.issue=1&rft.spage=89&rft.epage=96&rft.pages=89-96&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/S0969-2126(96)00012-3&rft_dat=%3Cproquest_cross%3E78366975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78366975&rft_id=info:pmid/8805516&rft_els_id=S0969212696000123&rfr_iscdi=true |