Arachidonate and Docosahexaenoate Added to Infant Formula Influence Fatty Acid Composition and Subsequent Eicosanoid Production in Neonatal Pigs

As natural components of human milk, arachidonic and docosahexaenoic acids play important roles in neonatal development; thus, addition of these fatty acids to infant formula has been suggested. This study examined the effects of supplementation of infant formula with microbial sources of either ara...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutrition 1996-09, Vol.126 (9), p.2199-2208
Hauptverfasser: Huang, Meng-Chuan, Craig-Schmidt, Margaret C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2208
container_issue 9
container_start_page 2199
container_title The Journal of nutrition
container_volume 126
creator Huang, Meng-Chuan
Craig-Schmidt, Margaret C.
description As natural components of human milk, arachidonic and docosahexaenoic acids play important roles in neonatal development; thus, addition of these fatty acids to infant formula has been suggested. This study examined the effects of supplementation of infant formula with microbial sources of either arachidonate or docosahexaenoate or both on accretion of these fatty acids in phospholipids and subsequent modulation of eicosanoid production in neonatal pig lung. One-day-old piglets received for 25 d one of four diets (n = 5): 1) standard diet containing a fat blend similar to that of conventional infant formula, 2) diet containing 0.9 g/100 g of total fatty acids as archidonate, 3) diet containing 0.7 g/100 g as docosahexaenoate, or 4) a diet containing both 1.0 g/100 g as arachidonate and 0.8 g/100 g as docosahexaenoate. Arachidonate supplementation resulted in 30–60% significantly greater arachidonate in lung phosphatidylethanolamine and phosphatidylcholine. In phosphatidylinositol, however, arachidonate was resistant to dietary manipulation. Accretion of docosahexaenoate in all three phospholipid classes was 2.6- to 4.7-fold greater in docosahexaenoate-supplemented groups than in the standard group. Inclusion of arachidonate in the diet augmented both prostacyclin and thromboxane production by 25 to 35%. Docosahexaenoate supplementation resulted in the least eicosanoid production among the treatments, and significant suppression was observed for thromboxane when supplementation with both fatty acids was compared with supplementation with arachidonate alone. Thus, dietary arachidonic acid and docosahexaenoic acid at concentrations only slightly greater than those found in human milk tended to exercise opposing effects on lung eicosanoid production.
doi_str_mv 10.1093/jn/126.9.2199
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78339655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022316622016212</els_id><sourcerecordid>10208984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-a5065f5637c468e23b64f4916d8e1bc37588b53df10ec918a26e1a25a82d234c3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhgdRaq1eeikEEe9mm-9JLpe1q4WihdrrcDbJtFlmkzWZEfsv_MlmuksFwauQvA9PDudtmrcELwjW7HwbzwmVC72gROtnzSkRnLSSYPy8OcWY0pYRKV82r0rZYowJ1-qkOVGKcIrVafN7mcHeB5cijB5BdOhTsqnAvf8FPqb5cemcd2hM6DL2EEe0Tnk3DTBfh8lH69EaxvEBLW1waJV2-1TCGFJ8tN1Mm-J_VGxEF2EWx1Sp65zcZB-hENFXP_8OA7oOd-V186KHofg3x_OsuV1ffF99aa--fb5cLa9aywUbWxBYil5I1lkuladsI3nPNZFOebKxrBNKbQRzPcHeaqKASk-AClDUUcYtO2s-Hrz7nOp8ZTS7UKwfBog-TcV0ijEthajg-3_AbZpyrLMZojtONeGyQu0BsjmVkn1v9jnsID8Ygs1ck9lGU2sy2sw1Vf7dUTptdt490cdeav7hmEOxMPQZog3lCWOUMc7FX00PycBdrsjtTfV3WHSE45p3h9zXTf4MPptiw1yZC9nb0bgU_jPgHxOHtog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197429146</pqid></control><display><type>article</type><title>Arachidonate and Docosahexaenoate Added to Infant Formula Influence Fatty Acid Composition and Subsequent Eicosanoid Production in Neonatal Pigs</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Huang, Meng-Chuan ; Craig-Schmidt, Margaret C.</creator><creatorcontrib>Huang, Meng-Chuan ; Craig-Schmidt, Margaret C.</creatorcontrib><description>As natural components of human milk, arachidonic and docosahexaenoic acids play important roles in neonatal development; thus, addition of these fatty acids to infant formula has been suggested. This study examined the effects of supplementation of infant formula with microbial sources of either arachidonate or docosahexaenoate or both on accretion of these fatty acids in phospholipids and subsequent modulation of eicosanoid production in neonatal pig lung. One-day-old piglets received for 25 d one of four diets (n = 5): 1) standard diet containing a fat blend similar to that of conventional infant formula, 2) diet containing 0.9 g/100 g of total fatty acids as archidonate, 3) diet containing 0.7 g/100 g as docosahexaenoate, or 4) a diet containing both 1.0 g/100 g as arachidonate and 0.8 g/100 g as docosahexaenoate. Arachidonate supplementation resulted in 30–60% significantly greater arachidonate in lung phosphatidylethanolamine and phosphatidylcholine. In phosphatidylinositol, however, arachidonate was resistant to dietary manipulation. Accretion of docosahexaenoate in all three phospholipid classes was 2.6- to 4.7-fold greater in docosahexaenoate-supplemented groups than in the standard group. Inclusion of arachidonate in the diet augmented both prostacyclin and thromboxane production by 25 to 35%. Docosahexaenoate supplementation resulted in the least eicosanoid production among the treatments, and significant suppression was observed for thromboxane when supplementation with both fatty acids was compared with supplementation with arachidonate alone. Thus, dietary arachidonic acid and docosahexaenoic acid at concentrations only slightly greater than those found in human milk tended to exercise opposing effects on lung eicosanoid production.</description><identifier>ISSN: 0022-3166</identifier><identifier>EISSN: 1541-6100</identifier><identifier>DOI: 10.1093/jn/126.9.2199</identifier><identifier>PMID: 8814208</identifier><identifier>CODEN: JONUAI</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>ACIDE ARACHIDONIQUE ; ACIDE GRAS INSATURE ; ACIDO ARAQUIDONICO ; ACIDOS GRASOS INSATURADOS ; ALIMENT POUR NOURRISSON ; ALIMENTOS PARA NINOS ; ANIMAL MODELS ; Animals ; Animals, Newborn - metabolism ; ARACHIDONIC ACID ; Arachidonic Acids - administration &amp; dosage ; Arachidonic Acids - analysis ; Arachidonic Acids - pharmacology ; Baby foods ; Biological and medical sciences ; Body Weight - physiology ; CEFALINAS ; CEPHALINE ; CEPHALINS ; COMPLEMENT ALIMENTAIRE ; DIET ; DIETA ; docosahexaenoic acid ; Docosahexaenoic Acids - administration &amp; dosage ; Docosahexaenoic Acids - analysis ; Docosahexaenoic Acids - pharmacology ; DOCOSENOIC ACIDS ; DOSAGE EFFECTS ; EFECTOS DE DOSIFICACION ; EFFET DOSE ; eicosanoid ; Eicosanoids - analysis ; Eicosanoids - biosynthesis ; Epoprostenol - metabolism ; EXPERIMENTACION ; EXPERIMENTATION ; Fatty Acids - analysis ; Feeding. Feeding behavior ; Food industries ; FOSFOLIPIDOS ; Fundamental and applied biological sciences. Psychology ; Hogs ; Humans ; Infant Food - analysis ; Infant Food - standards ; INFANT FOODS ; infant formula ; Infant, Newborn ; LECITHINE ; LECITHINS ; LECITINAS ; LIPIDE ; LIPIDOS ; LIPIDS ; Lung - chemistry ; Lung - metabolism ; LUNGS ; Male ; MODELE ANIMAL ; MODELOS ANIMALES ; OMEGA-3 FATTY ACIDS ; OMEGA-6 FATTY ACIDS ; PHOSPHATIDE ; PHOSPHATIDYLCHOLINES ; Phosphatidylcholines - analysis ; Phosphatidylcholines - metabolism ; PHOSPHATIDYLETHANOLAMINES ; Phosphatidylethanolamines - analysis ; Phosphatidylethanolamines - metabolism ; PHOSPHATIDYLINOSITOLS ; PHOSPHOLIPIDS ; Phosphorus - chemistry ; piglets ; POUMON ; PULMONES ; REGIME ALIMENTAIRE ; Research and development. New food products, dietetic foods and beverages ; SUPLEMENTOS ; SUPPLEMENTS ; Swine - metabolism ; THROMBOXANES ; Thromboxanes - metabolism ; UNSATURATED FATTY ACIDS ; Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><ispartof>The Journal of nutrition, 1996-09, Vol.126 (9), p.2199-2208</ispartof><rights>1996 American Society for Nutrition.</rights><rights>1996 INIST-CNRS</rights><rights>Copyright American Institute of Nutrition Sep 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-a5065f5637c468e23b64f4916d8e1bc37588b53df10ec918a26e1a25a82d234c3</citedby><cites>FETCH-LOGICAL-c453t-a5065f5637c468e23b64f4916d8e1bc37588b53df10ec918a26e1a25a82d234c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3233445$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8814208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Meng-Chuan</creatorcontrib><creatorcontrib>Craig-Schmidt, Margaret C.</creatorcontrib><title>Arachidonate and Docosahexaenoate Added to Infant Formula Influence Fatty Acid Composition and Subsequent Eicosanoid Production in Neonatal Pigs</title><title>The Journal of nutrition</title><addtitle>J Nutr</addtitle><description>As natural components of human milk, arachidonic and docosahexaenoic acids play important roles in neonatal development; thus, addition of these fatty acids to infant formula has been suggested. This study examined the effects of supplementation of infant formula with microbial sources of either arachidonate or docosahexaenoate or both on accretion of these fatty acids in phospholipids and subsequent modulation of eicosanoid production in neonatal pig lung. One-day-old piglets received for 25 d one of four diets (n = 5): 1) standard diet containing a fat blend similar to that of conventional infant formula, 2) diet containing 0.9 g/100 g of total fatty acids as archidonate, 3) diet containing 0.7 g/100 g as docosahexaenoate, or 4) a diet containing both 1.0 g/100 g as arachidonate and 0.8 g/100 g as docosahexaenoate. Arachidonate supplementation resulted in 30–60% significantly greater arachidonate in lung phosphatidylethanolamine and phosphatidylcholine. In phosphatidylinositol, however, arachidonate was resistant to dietary manipulation. Accretion of docosahexaenoate in all three phospholipid classes was 2.6- to 4.7-fold greater in docosahexaenoate-supplemented groups than in the standard group. Inclusion of arachidonate in the diet augmented both prostacyclin and thromboxane production by 25 to 35%. Docosahexaenoate supplementation resulted in the least eicosanoid production among the treatments, and significant suppression was observed for thromboxane when supplementation with both fatty acids was compared with supplementation with arachidonate alone. Thus, dietary arachidonic acid and docosahexaenoic acid at concentrations only slightly greater than those found in human milk tended to exercise opposing effects on lung eicosanoid production.</description><subject>ACIDE ARACHIDONIQUE</subject><subject>ACIDE GRAS INSATURE</subject><subject>ACIDO ARAQUIDONICO</subject><subject>ACIDOS GRASOS INSATURADOS</subject><subject>ALIMENT POUR NOURRISSON</subject><subject>ALIMENTOS PARA NINOS</subject><subject>ANIMAL MODELS</subject><subject>Animals</subject><subject>Animals, Newborn - metabolism</subject><subject>ARACHIDONIC ACID</subject><subject>Arachidonic Acids - administration &amp; dosage</subject><subject>Arachidonic Acids - analysis</subject><subject>Arachidonic Acids - pharmacology</subject><subject>Baby foods</subject><subject>Biological and medical sciences</subject><subject>Body Weight - physiology</subject><subject>CEFALINAS</subject><subject>CEPHALINE</subject><subject>CEPHALINS</subject><subject>COMPLEMENT ALIMENTAIRE</subject><subject>DIET</subject><subject>DIETA</subject><subject>docosahexaenoic acid</subject><subject>Docosahexaenoic Acids - administration &amp; dosage</subject><subject>Docosahexaenoic Acids - analysis</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>DOCOSENOIC ACIDS</subject><subject>DOSAGE EFFECTS</subject><subject>EFECTOS DE DOSIFICACION</subject><subject>EFFET DOSE</subject><subject>eicosanoid</subject><subject>Eicosanoids - analysis</subject><subject>Eicosanoids - biosynthesis</subject><subject>Epoprostenol - metabolism</subject><subject>EXPERIMENTACION</subject><subject>EXPERIMENTATION</subject><subject>Fatty Acids - analysis</subject><subject>Feeding. Feeding behavior</subject><subject>Food industries</subject><subject>FOSFOLIPIDOS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hogs</subject><subject>Humans</subject><subject>Infant Food - analysis</subject><subject>Infant Food - standards</subject><subject>INFANT FOODS</subject><subject>infant formula</subject><subject>Infant, Newborn</subject><subject>LECITHINE</subject><subject>LECITHINS</subject><subject>LECITINAS</subject><subject>LIPIDE</subject><subject>LIPIDOS</subject><subject>LIPIDS</subject><subject>Lung - chemistry</subject><subject>Lung - metabolism</subject><subject>LUNGS</subject><subject>Male</subject><subject>MODELE ANIMAL</subject><subject>MODELOS ANIMALES</subject><subject>OMEGA-3 FATTY ACIDS</subject><subject>OMEGA-6 FATTY ACIDS</subject><subject>PHOSPHATIDE</subject><subject>PHOSPHATIDYLCHOLINES</subject><subject>Phosphatidylcholines - analysis</subject><subject>Phosphatidylcholines - metabolism</subject><subject>PHOSPHATIDYLETHANOLAMINES</subject><subject>Phosphatidylethanolamines - analysis</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>PHOSPHATIDYLINOSITOLS</subject><subject>PHOSPHOLIPIDS</subject><subject>Phosphorus - chemistry</subject><subject>piglets</subject><subject>POUMON</subject><subject>PULMONES</subject><subject>REGIME ALIMENTAIRE</subject><subject>Research and development. New food products, dietetic foods and beverages</subject><subject>SUPLEMENTOS</subject><subject>SUPPLEMENTS</subject><subject>Swine - metabolism</subject><subject>THROMBOXANES</subject><subject>Thromboxanes - metabolism</subject><subject>UNSATURATED FATTY ACIDS</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><issn>0022-3166</issn><issn>1541-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhgdRaq1eeikEEe9mm-9JLpe1q4WihdrrcDbJtFlmkzWZEfsv_MlmuksFwauQvA9PDudtmrcELwjW7HwbzwmVC72gROtnzSkRnLSSYPy8OcWY0pYRKV82r0rZYowJ1-qkOVGKcIrVafN7mcHeB5cijB5BdOhTsqnAvf8FPqb5cemcd2hM6DL2EEe0Tnk3DTBfh8lH69EaxvEBLW1waJV2-1TCGFJ8tN1Mm-J_VGxEF2EWx1Sp65zcZB-hENFXP_8OA7oOd-V186KHofg3x_OsuV1ffF99aa--fb5cLa9aywUbWxBYil5I1lkuladsI3nPNZFOebKxrBNKbQRzPcHeaqKASk-AClDUUcYtO2s-Hrz7nOp8ZTS7UKwfBog-TcV0ijEthajg-3_AbZpyrLMZojtONeGyQu0BsjmVkn1v9jnsID8Ygs1ck9lGU2sy2sw1Vf7dUTptdt490cdeav7hmEOxMPQZog3lCWOUMc7FX00PycBdrsjtTfV3WHSE45p3h9zXTf4MPptiw1yZC9nb0bgU_jPgHxOHtog</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Huang, Meng-Chuan</creator><creator>Craig-Schmidt, Margaret C.</creator><general>Elsevier Inc</general><general>American Society for Nutritional Sciences</general><general>American Institute of Nutrition</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>19960901</creationdate><title>Arachidonate and Docosahexaenoate Added to Infant Formula Influence Fatty Acid Composition and Subsequent Eicosanoid Production in Neonatal Pigs</title><author>Huang, Meng-Chuan ; Craig-Schmidt, Margaret C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-a5065f5637c468e23b64f4916d8e1bc37588b53df10ec918a26e1a25a82d234c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>ACIDE ARACHIDONIQUE</topic><topic>ACIDE GRAS INSATURE</topic><topic>ACIDO ARAQUIDONICO</topic><topic>ACIDOS GRASOS INSATURADOS</topic><topic>ALIMENT POUR NOURRISSON</topic><topic>ALIMENTOS PARA NINOS</topic><topic>ANIMAL MODELS</topic><topic>Animals</topic><topic>Animals, Newborn - metabolism</topic><topic>ARACHIDONIC ACID</topic><topic>Arachidonic Acids - administration &amp; dosage</topic><topic>Arachidonic Acids - analysis</topic><topic>Arachidonic Acids - pharmacology</topic><topic>Baby foods</topic><topic>Biological and medical sciences</topic><topic>Body Weight - physiology</topic><topic>CEFALINAS</topic><topic>CEPHALINE</topic><topic>CEPHALINS</topic><topic>COMPLEMENT ALIMENTAIRE</topic><topic>DIET</topic><topic>DIETA</topic><topic>docosahexaenoic acid</topic><topic>Docosahexaenoic Acids - administration &amp; dosage</topic><topic>Docosahexaenoic Acids - analysis</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>DOCOSENOIC ACIDS</topic><topic>DOSAGE EFFECTS</topic><topic>EFECTOS DE DOSIFICACION</topic><topic>EFFET DOSE</topic><topic>eicosanoid</topic><topic>Eicosanoids - analysis</topic><topic>Eicosanoids - biosynthesis</topic><topic>Epoprostenol - metabolism</topic><topic>EXPERIMENTACION</topic><topic>EXPERIMENTATION</topic><topic>Fatty Acids - analysis</topic><topic>Feeding. Feeding behavior</topic><topic>Food industries</topic><topic>FOSFOLIPIDOS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hogs</topic><topic>Humans</topic><topic>Infant Food - analysis</topic><topic>Infant Food - standards</topic><topic>INFANT FOODS</topic><topic>infant formula</topic><topic>Infant, Newborn</topic><topic>LECITHINE</topic><topic>LECITHINS</topic><topic>LECITINAS</topic><topic>LIPIDE</topic><topic>LIPIDOS</topic><topic>LIPIDS</topic><topic>Lung - chemistry</topic><topic>Lung - metabolism</topic><topic>LUNGS</topic><topic>Male</topic><topic>MODELE ANIMAL</topic><topic>MODELOS ANIMALES</topic><topic>OMEGA-3 FATTY ACIDS</topic><topic>OMEGA-6 FATTY ACIDS</topic><topic>PHOSPHATIDE</topic><topic>PHOSPHATIDYLCHOLINES</topic><topic>Phosphatidylcholines - analysis</topic><topic>Phosphatidylcholines - metabolism</topic><topic>PHOSPHATIDYLETHANOLAMINES</topic><topic>Phosphatidylethanolamines - analysis</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>PHOSPHATIDYLINOSITOLS</topic><topic>PHOSPHOLIPIDS</topic><topic>Phosphorus - chemistry</topic><topic>piglets</topic><topic>POUMON</topic><topic>PULMONES</topic><topic>REGIME ALIMENTAIRE</topic><topic>Research and development. New food products, dietetic foods and beverages</topic><topic>SUPLEMENTOS</topic><topic>SUPPLEMENTS</topic><topic>Swine - metabolism</topic><topic>THROMBOXANES</topic><topic>Thromboxanes - metabolism</topic><topic>UNSATURATED FATTY ACIDS</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Meng-Chuan</creatorcontrib><creatorcontrib>Craig-Schmidt, Margaret C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Meng-Chuan</au><au>Craig-Schmidt, Margaret C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arachidonate and Docosahexaenoate Added to Infant Formula Influence Fatty Acid Composition and Subsequent Eicosanoid Production in Neonatal Pigs</atitle><jtitle>The Journal of nutrition</jtitle><addtitle>J Nutr</addtitle><date>1996-09-01</date><risdate>1996</risdate><volume>126</volume><issue>9</issue><spage>2199</spage><epage>2208</epage><pages>2199-2208</pages><issn>0022-3166</issn><eissn>1541-6100</eissn><coden>JONUAI</coden><abstract>As natural components of human milk, arachidonic and docosahexaenoic acids play important roles in neonatal development; thus, addition of these fatty acids to infant formula has been suggested. This study examined the effects of supplementation of infant formula with microbial sources of either arachidonate or docosahexaenoate or both on accretion of these fatty acids in phospholipids and subsequent modulation of eicosanoid production in neonatal pig lung. One-day-old piglets received for 25 d one of four diets (n = 5): 1) standard diet containing a fat blend similar to that of conventional infant formula, 2) diet containing 0.9 g/100 g of total fatty acids as archidonate, 3) diet containing 0.7 g/100 g as docosahexaenoate, or 4) a diet containing both 1.0 g/100 g as arachidonate and 0.8 g/100 g as docosahexaenoate. Arachidonate supplementation resulted in 30–60% significantly greater arachidonate in lung phosphatidylethanolamine and phosphatidylcholine. In phosphatidylinositol, however, arachidonate was resistant to dietary manipulation. Accretion of docosahexaenoate in all three phospholipid classes was 2.6- to 4.7-fold greater in docosahexaenoate-supplemented groups than in the standard group. Inclusion of arachidonate in the diet augmented both prostacyclin and thromboxane production by 25 to 35%. Docosahexaenoate supplementation resulted in the least eicosanoid production among the treatments, and significant suppression was observed for thromboxane when supplementation with both fatty acids was compared with supplementation with arachidonate alone. Thus, dietary arachidonic acid and docosahexaenoic acid at concentrations only slightly greater than those found in human milk tended to exercise opposing effects on lung eicosanoid production.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>8814208</pmid><doi>10.1093/jn/126.9.2199</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3166
ispartof The Journal of nutrition, 1996-09, Vol.126 (9), p.2199-2208
issn 0022-3166
1541-6100
language eng
recordid cdi_proquest_miscellaneous_78339655
source MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects ACIDE ARACHIDONIQUE
ACIDE GRAS INSATURE
ACIDO ARAQUIDONICO
ACIDOS GRASOS INSATURADOS
ALIMENT POUR NOURRISSON
ALIMENTOS PARA NINOS
ANIMAL MODELS
Animals
Animals, Newborn - metabolism
ARACHIDONIC ACID
Arachidonic Acids - administration & dosage
Arachidonic Acids - analysis
Arachidonic Acids - pharmacology
Baby foods
Biological and medical sciences
Body Weight - physiology
CEFALINAS
CEPHALINE
CEPHALINS
COMPLEMENT ALIMENTAIRE
DIET
DIETA
docosahexaenoic acid
Docosahexaenoic Acids - administration & dosage
Docosahexaenoic Acids - analysis
Docosahexaenoic Acids - pharmacology
DOCOSENOIC ACIDS
DOSAGE EFFECTS
EFECTOS DE DOSIFICACION
EFFET DOSE
eicosanoid
Eicosanoids - analysis
Eicosanoids - biosynthesis
Epoprostenol - metabolism
EXPERIMENTACION
EXPERIMENTATION
Fatty Acids - analysis
Feeding. Feeding behavior
Food industries
FOSFOLIPIDOS
Fundamental and applied biological sciences. Psychology
Hogs
Humans
Infant Food - analysis
Infant Food - standards
INFANT FOODS
infant formula
Infant, Newborn
LECITHINE
LECITHINS
LECITINAS
LIPIDE
LIPIDOS
LIPIDS
Lung - chemistry
Lung - metabolism
LUNGS
Male
MODELE ANIMAL
MODELOS ANIMALES
OMEGA-3 FATTY ACIDS
OMEGA-6 FATTY ACIDS
PHOSPHATIDE
PHOSPHATIDYLCHOLINES
Phosphatidylcholines - analysis
Phosphatidylcholines - metabolism
PHOSPHATIDYLETHANOLAMINES
Phosphatidylethanolamines - analysis
Phosphatidylethanolamines - metabolism
PHOSPHATIDYLINOSITOLS
PHOSPHOLIPIDS
Phosphorus - chemistry
piglets
POUMON
PULMONES
REGIME ALIMENTAIRE
Research and development. New food products, dietetic foods and beverages
SUPLEMENTOS
SUPPLEMENTS
Swine - metabolism
THROMBOXANES
Thromboxanes - metabolism
UNSATURATED FATTY ACIDS
Vertebrates: anatomy and physiology, studies on body, several organs or systems
title Arachidonate and Docosahexaenoate Added to Infant Formula Influence Fatty Acid Composition and Subsequent Eicosanoid Production in Neonatal Pigs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arachidonate%20and%20Docosahexaenoate%20Added%20to%20Infant%20Formula%20Influence%20Fatty%20Acid%20Composition%20and%20Subsequent%20Eicosanoid%20Production%20in%20Neonatal%20Pigs&rft.jtitle=The%20Journal%20of%20nutrition&rft.au=Huang,%20Meng-Chuan&rft.date=1996-09-01&rft.volume=126&rft.issue=9&rft.spage=2199&rft.epage=2208&rft.pages=2199-2208&rft.issn=0022-3166&rft.eissn=1541-6100&rft.coden=JONUAI&rft_id=info:doi/10.1093/jn/126.9.2199&rft_dat=%3Cproquest_cross%3E10208984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197429146&rft_id=info:pmid/8814208&rft_els_id=S0022316622016212&rfr_iscdi=true