Pyridoxine deficiency affects biomechanical properties of chick tibial bone

The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 1996-06, Vol.18 (6), p.567-574
Hauptverfasser: Massé, P.G., Rimnac, C.M., Yamauchi, M., Coburn, S.P., Rucker, R.B., Howell, D.S., Boskey, A.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue 6
container_start_page 567
container_title Bone (New York, N.Y.)
container_volume 18
creator Massé, P.G.
Rimnac, C.M.
Yamauchi, M.
Coburn, S.P.
Rucker, R.B.
Howell, D.S.
Boskey, A.L.
description The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B 6-deficient and vitamin B 6-replete chick bones. In this model, when B 6-deficient and control animals are compared, vitamin B 6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 ± 6 vs. 58 ± 3); mineral to matrix ratio of the FTIR spectra (4.2 ± 0.6 vs. 4.5 ± 0.2), line-broadening analyses of the X-ray diffraction 002 peak ( β 002 = 0.50 ± 0.1 vs. 0.49 ± 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B 6 deficient chick bones (20 ± 2 % of total hydroxyproline extracted vs. 10 ± 3% p ≤ 0.001). The B 6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 ± 0.07 vs. 0.84 ± 0.13 p < 0.001); and a nonsignificant increase in HLNL, dehydrohydroxylysinonorleucine, (0.51 ± 0.03 vs. 0.43 ± 0.03, p ≤ 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B 6-deficient animals was decreased from 203 ± 35 MPa to 151 ± 23 MPa, p ≤ 0.01, and offset yield load was decreased from 165 ± 9 MPa to 125 ± 14 MPa, p ≤ 0.05. Since earlier histomorphometric studies had demonstrated that the B 6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.
doi_str_mv 10.1016/8756-3282(96)00072-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78326445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>8756328296000725</els_id><sourcerecordid>78326445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-dc90a21ce827b147f933050968207411472939f1fd4351883d0835c815c31a683</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMoWh9_oDALEV2M5jlJNoIUX1jQha5DJnOD0XamJlOxf2_Gli5dBXLOvVwOQscEXxJMqislRVUyqui5ri4wxpKWYguNiJKspLJi22i0UfbQfkofWWJakl20qxQWWqsRenpZxtB0P6GFogEfXIDWLQvrPbg-FXXoZuDebRucnRbz2M0h9gFS0fnCvQf3WfShDhnVXQuHaMfbaYKj9XuA3u5uX8cP5eT5_nF8MymdILovG6expcSBorImXHrNGBZYV4piyUn-oZppT3zDmSBKsQYrJpwiwjFiK8UO0Nlqb77nawGpN7OQHEyntoVukYxUjFaciyzylehil1IEb-YxzGxcGoLN0NAMgcwQyOjK_DU0w9jJev-inkGzGVpHy_x0zW3KWXy0rQtpozHClOIya8crrbXJmraPyVCMOSaSUcwzvl5hyKm-A0ST_uJDE2Jub5ou_H_mLxZsk9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78326445</pqid></control><display><type>article</type><title>Pyridoxine deficiency affects biomechanical properties of chick tibial bone</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>NASA Technical Reports Server</source><creator>Massé, P.G. ; Rimnac, C.M. ; Yamauchi, M. ; Coburn, S.P. ; Rucker, R.B. ; Howell, D.S. ; Boskey, A.L.</creator><creatorcontrib>Massé, P.G. ; Rimnac, C.M. ; Yamauchi, M. ; Coburn, S.P. ; Rucker, R.B. ; Howell, D.S. ; Boskey, A.L.</creatorcontrib><description>The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B 6-deficient and vitamin B 6-replete chick bones. In this model, when B 6-deficient and control animals are compared, vitamin B 6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 ± 6 vs. 58 ± 3); mineral to matrix ratio of the FTIR spectra (4.2 ± 0.6 vs. 4.5 ± 0.2), line-broadening analyses of the X-ray diffraction 002 peak ( β 002 = 0.50 ± 0.1 vs. 0.49 ± 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B 6 deficient chick bones (20 ± 2 % of total hydroxyproline extracted vs. 10 ± 3% p ≤ 0.001). The B 6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 ± 0.07 vs. 0.84 ± 0.13 p &lt; 0.001); and a nonsignificant increase in HLNL, dehydrohydroxylysinonorleucine, (0.51 ± 0.03 vs. 0.43 ± 0.03, p ≤ 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B 6-deficient animals was decreased from 203 ± 35 MPa to 151 ± 23 MPa, p ≤ 0.01, and offset yield load was decreased from 165 ± 9 MPa to 125 ± 14 MPa, p ≤ 0.05. Since earlier histomorphometric studies had demonstrated that the B 6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.</description><identifier>ISSN: 8756-3282</identifier><identifier>EISSN: 1873-2763</identifier><identifier>DOI: 10.1016/8756-3282(96)00072-5</identifier><identifier>PMID: 8805998</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Inc</publisher><subject>Aerospace Medicine ; Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Bone biomechanics ; Bone Density - physiology ; Chicken bone ; Chickens ; Collagen - metabolism ; Collagen crosslinks ; Dipeptides - metabolism ; Elasticity ; Hydroxyproline - urine ; Male ; Medical sciences ; Metabolic diseases ; Mineral analysis ; Other nutritional diseases (malnutrition, nutritional and vitamin deficiencies...) ; Pyridoxal Phosphate - blood ; Radiography ; Space life sciences ; Spectroscopy, Fourier Transform Infrared ; Tibia - diagnostic imaging ; Tibia - pathology ; Vitamin B 6 ; Vitamin B 6 Deficiency - pathology ; X-Ray Diffraction</subject><ispartof>Bone (New York, N.Y.), 1996-06, Vol.18 (6), p.567-574</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-dc90a21ce827b147f933050968207411472939f1fd4351883d0835c815c31a683</citedby><cites>FETCH-LOGICAL-c519t-dc90a21ce827b147f933050968207411472939f1fd4351883d0835c815c31a683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/8756-3282(96)00072-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3138847$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8805998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Massé, P.G.</creatorcontrib><creatorcontrib>Rimnac, C.M.</creatorcontrib><creatorcontrib>Yamauchi, M.</creatorcontrib><creatorcontrib>Coburn, S.P.</creatorcontrib><creatorcontrib>Rucker, R.B.</creatorcontrib><creatorcontrib>Howell, D.S.</creatorcontrib><creatorcontrib>Boskey, A.L.</creatorcontrib><title>Pyridoxine deficiency affects biomechanical properties of chick tibial bone</title><title>Bone (New York, N.Y.)</title><addtitle>Bone</addtitle><description>The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B 6-deficient and vitamin B 6-replete chick bones. In this model, when B 6-deficient and control animals are compared, vitamin B 6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 ± 6 vs. 58 ± 3); mineral to matrix ratio of the FTIR spectra (4.2 ± 0.6 vs. 4.5 ± 0.2), line-broadening analyses of the X-ray diffraction 002 peak ( β 002 = 0.50 ± 0.1 vs. 0.49 ± 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B 6 deficient chick bones (20 ± 2 % of total hydroxyproline extracted vs. 10 ± 3% p ≤ 0.001). The B 6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 ± 0.07 vs. 0.84 ± 0.13 p &lt; 0.001); and a nonsignificant increase in HLNL, dehydrohydroxylysinonorleucine, (0.51 ± 0.03 vs. 0.43 ± 0.03, p ≤ 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B 6-deficient animals was decreased from 203 ± 35 MPa to 151 ± 23 MPa, p ≤ 0.01, and offset yield load was decreased from 165 ± 9 MPa to 125 ± 14 MPa, p ≤ 0.05. Since earlier histomorphometric studies had demonstrated that the B 6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.</description><subject>Aerospace Medicine</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Bone biomechanics</subject><subject>Bone Density - physiology</subject><subject>Chicken bone</subject><subject>Chickens</subject><subject>Collagen - metabolism</subject><subject>Collagen crosslinks</subject><subject>Dipeptides - metabolism</subject><subject>Elasticity</subject><subject>Hydroxyproline - urine</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Mineral analysis</subject><subject>Other nutritional diseases (malnutrition, nutritional and vitamin deficiencies...)</subject><subject>Pyridoxal Phosphate - blood</subject><subject>Radiography</subject><subject>Space life sciences</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Tibia - diagnostic imaging</subject><subject>Tibia - pathology</subject><subject>Vitamin B 6</subject><subject>Vitamin B 6 Deficiency - pathology</subject><subject>X-Ray Diffraction</subject><issn>8756-3282</issn><issn>1873-2763</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUQIMoWh9_oDALEV2M5jlJNoIUX1jQha5DJnOD0XamJlOxf2_Gli5dBXLOvVwOQscEXxJMqislRVUyqui5ri4wxpKWYguNiJKspLJi22i0UfbQfkofWWJakl20qxQWWqsRenpZxtB0P6GFogEfXIDWLQvrPbg-FXXoZuDebRucnRbz2M0h9gFS0fnCvQf3WfShDhnVXQuHaMfbaYKj9XuA3u5uX8cP5eT5_nF8MymdILovG6expcSBorImXHrNGBZYV4piyUn-oZppT3zDmSBKsQYrJpwiwjFiK8UO0Nlqb77nawGpN7OQHEyntoVukYxUjFaciyzylehil1IEb-YxzGxcGoLN0NAMgcwQyOjK_DU0w9jJev-inkGzGVpHy_x0zW3KWXy0rQtpozHClOIya8crrbXJmraPyVCMOSaSUcwzvl5hyKm-A0ST_uJDE2Jub5ou_H_mLxZsk9o</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Massé, P.G.</creator><creator>Rimnac, C.M.</creator><creator>Yamauchi, M.</creator><creator>Coburn, S.P.</creator><creator>Rucker, R.B.</creator><creator>Howell, D.S.</creator><creator>Boskey, A.L.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960601</creationdate><title>Pyridoxine deficiency affects biomechanical properties of chick tibial bone</title><author>Massé, P.G. ; Rimnac, C.M. ; Yamauchi, M. ; Coburn, S.P. ; Rucker, R.B. ; Howell, D.S. ; Boskey, A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-dc90a21ce827b147f933050968207411472939f1fd4351883d0835c815c31a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Aerospace Medicine</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Bone biomechanics</topic><topic>Bone Density - physiology</topic><topic>Chicken bone</topic><topic>Chickens</topic><topic>Collagen - metabolism</topic><topic>Collagen crosslinks</topic><topic>Dipeptides - metabolism</topic><topic>Elasticity</topic><topic>Hydroxyproline - urine</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Mineral analysis</topic><topic>Other nutritional diseases (malnutrition, nutritional and vitamin deficiencies...)</topic><topic>Pyridoxal Phosphate - blood</topic><topic>Radiography</topic><topic>Space life sciences</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Tibia - diagnostic imaging</topic><topic>Tibia - pathology</topic><topic>Vitamin B 6</topic><topic>Vitamin B 6 Deficiency - pathology</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massé, P.G.</creatorcontrib><creatorcontrib>Rimnac, C.M.</creatorcontrib><creatorcontrib>Yamauchi, M.</creatorcontrib><creatorcontrib>Coburn, S.P.</creatorcontrib><creatorcontrib>Rucker, R.B.</creatorcontrib><creatorcontrib>Howell, D.S.</creatorcontrib><creatorcontrib>Boskey, A.L.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bone (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massé, P.G.</au><au>Rimnac, C.M.</au><au>Yamauchi, M.</au><au>Coburn, S.P.</au><au>Rucker, R.B.</au><au>Howell, D.S.</au><au>Boskey, A.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyridoxine deficiency affects biomechanical properties of chick tibial bone</atitle><jtitle>Bone (New York, N.Y.)</jtitle><addtitle>Bone</addtitle><date>1996-06-01</date><risdate>1996</risdate><volume>18</volume><issue>6</issue><spage>567</spage><epage>574</epage><pages>567-574</pages><issn>8756-3282</issn><eissn>1873-2763</eissn><abstract>The mechanical integrity of bone is dependent on the bone matrix, which is believed to account for the plastic deformation of the tissue, and the mineral, which is believed to account for the elastic deformation. The validity of this model is shown in this study based on analysis of the bones of vitamin B 6-deficient and vitamin B 6-replete chick bones. In this model, when B 6-deficient and control animals are compared, vitamin B 6 deficiency has no effect on the mineral content or composition of cortical bone as measured by ash weight (63 ± 6 vs. 58 ± 3); mineral to matrix ratio of the FTIR spectra (4.2 ± 0.6 vs. 4.5 ± 0.2), line-broadening analyses of the X-ray diffraction 002 peak ( β 002 = 0.50 ± 0.1 vs. 0.49 ± 0.01), or other features of the infrared spectra. In contrast, collagen was significantly more extractable from vitamin B 6 deficient chick bones (20 ± 2 % of total hydroxyproline extracted vs. 10 ± 3% p ≤ 0.001). The B 6-deficient bones also contained an increased amount of the reducible cross-links DHLNL, dehydro-dihydroxylysinonorleucine, (1.03 ± 0.07 vs. 0.84 ± 0.13 p &lt; 0.001); and a nonsignificant increase in HLNL, dehydrohydroxylysinonorleucine, (0.51 ± 0.03 vs. 0.43 ± 0.03, p ≤ 0.10). There were no significant changes in bone length, bone diameter, or area moment of inertia. In four-point bending, no significant changes in elastic modulus, stiffness, offset yield deflection, or fracture deflection were detected. However, fracture load in the B 6-deficient animals was decreased from 203 ± 35 MPa to 151 ± 23 MPa, p ≤ 0.01, and offset yield load was decreased from 165 ± 9 MPa to 125 ± 14 MPa, p ≤ 0.05. Since earlier histomorphometric studies had demonstrated that the B 6-deficient bones were osteopenic, these data suggest that although proper cortical bone mineralization occurred, the alterations of the collagen resulted in changes to bone mechanical performance.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Inc</pub><pmid>8805998</pmid><doi>10.1016/8756-3282(96)00072-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-3282
ispartof Bone (New York, N.Y.), 1996-06, Vol.18 (6), p.567-574
issn 8756-3282
1873-2763
language eng
recordid cdi_proquest_miscellaneous_78326445
source MEDLINE; Elsevier ScienceDirect Journals Complete; NASA Technical Reports Server
subjects Aerospace Medicine
Animals
Biological and medical sciences
Biomechanical Phenomena
Bone biomechanics
Bone Density - physiology
Chicken bone
Chickens
Collagen - metabolism
Collagen crosslinks
Dipeptides - metabolism
Elasticity
Hydroxyproline - urine
Male
Medical sciences
Metabolic diseases
Mineral analysis
Other nutritional diseases (malnutrition, nutritional and vitamin deficiencies...)
Pyridoxal Phosphate - blood
Radiography
Space life sciences
Spectroscopy, Fourier Transform Infrared
Tibia - diagnostic imaging
Tibia - pathology
Vitamin B 6
Vitamin B 6 Deficiency - pathology
X-Ray Diffraction
title Pyridoxine deficiency affects biomechanical properties of chick tibial bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyridoxine%20deficiency%20affects%20biomechanical%20properties%20of%20chick%20tibial%20bone&rft.jtitle=Bone%20(New%20York,%20N.Y.)&rft.au=Mass%C3%A9,%20P.G.&rft.date=1996-06-01&rft.volume=18&rft.issue=6&rft.spage=567&rft.epage=574&rft.pages=567-574&rft.issn=8756-3282&rft.eissn=1873-2763&rft_id=info:doi/10.1016/8756-3282(96)00072-5&rft_dat=%3Cproquest_cross%3E78326445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78326445&rft_id=info:pmid/8805998&rft_els_id=8756328296000725&rfr_iscdi=true