Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2

We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 1996-08, Vol.332 (1), p.8-18
Hauptverfasser: Laethem, Ronald M., Blumenkopf, Todd A., Cory, Michael, Elwell, Lynn, Moxham, Cary P., Ray, Paul H., Walton, Leslie M., Smith, Gary K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 8
container_title Archives of biochemistry and biophysics
container_volume 332
creator Laethem, Ronald M.
Blumenkopf, Todd A.
Cory, Michael
Elwell, Lynn
Moxham, Cary P.
Ray, Paul H.
Walton, Leslie M.
Smith, Gary K.
description We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA inSaccharomyces cerevisiae,the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band withMr34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted inkcat/Kmvalues of 57,000 and 19,000M−1s−1for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D,L-phenyllactate, we found unique esterase/peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate–α-phenylalanine (MTX-Phe) and methotrexate–α-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. Thekcat/Kmvalues for MTX-Phe were 440,000 and 90,000M−1s−1for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000M−1s−1for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60°C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach.
doi_str_mv 10.1006/abbi.1996.0310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78317721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986196903100</els_id><sourcerecordid>78317721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1711b45569e1000d1eeeb8a7fd0f7d82ed7588e5048b9717d09ca45c0b86b0083</originalsourceid><addsrcrecordid>eNp1kM1PwkAQxTdGg4hevZn05K04Qz92eyQExYREDnre7Mc0rkJbd4sB_3pbId44TTLvzcu8H2O3CGMEyB-U1m6MRZGPIUE4Y0OEIo8hEek5GwJAEhcix0t2FcIHAGKaTwZsIATkHJIh-5zvGk8huLqKVGWj2bvyyrTk3Y9q-2VdRovtRlXRSlXGU7c00cpT42ujvK53-4aa1lkVKJriX8QpdXLNLkq1DnRznCP29jh_nS3i5cvT82y6jE2SFG2MHFGnWZYX1DUEi0SkheKlhZJbMSHLMyEog1TogiO3UBiVZga0yDWASEbs_pDbvfG1pdDKjQuG1mtVUb0NkosEOZ9gZxwfjMbXIXgqZePdRvm9RJA9XdnTlT1d2dPtDu6OyVu9IftvP-LsdHHQqav37cjLYBxVhqzzZFppa3cq-hd1XYoa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78317721</pqid></control><display><type>article</type><title>Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Laethem, Ronald M. ; Blumenkopf, Todd A. ; Cory, Michael ; Elwell, Lynn ; Moxham, Cary P. ; Ray, Paul H. ; Walton, Leslie M. ; Smith, Gary K.</creator><creatorcontrib>Laethem, Ronald M. ; Blumenkopf, Todd A. ; Cory, Michael ; Elwell, Lynn ; Moxham, Cary P. ; Ray, Paul H. ; Walton, Leslie M. ; Smith, Gary K.</creatorcontrib><description>We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA inSaccharomyces cerevisiae,the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band withMr34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted inkcat/Kmvalues of 57,000 and 19,000M−1s−1for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D,L-phenyllactate, we found unique esterase/peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate–α-phenylalanine (MTX-Phe) and methotrexate–α-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. Thekcat/Kmvalues for MTX-Phe were 440,000 and 90,000M−1s−1for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000M−1s−1for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60°C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1006/abbi.1996.0310</identifier><identifier>PMID: 8806703</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Carboxypeptidases - chemistry ; Carboxypeptidases - genetics ; Carboxypeptidases - metabolism ; Cattle ; Cloning, Molecular ; DNA Primers - genetics ; Enzyme Precursors - chemistry ; Enzyme Precursors - genetics ; Enzyme Precursors - metabolism ; Enzyme Stability ; Gene Expression ; Humans ; Kinetics ; methotrexate ; Methotrexate - analogs &amp; derivatives ; Methotrexate - metabolism ; Methotrexate - therapeutic use ; Molecular Sequence Data ; Neoplasms - drug therapy ; Pancreas - enzymology ; Phenylalanine - analogs &amp; derivatives ; Phenylalanine - metabolism ; Phenylalanine - therapeutic use ; preprocarboxypeptidase A1 ; preprocarboxypeptidase A2 ; Prodrugs - metabolism ; Prodrugs - therapeutic use ; protein purification ; Rats ; Saccharomyces cerevisiae - genetics ; Sequence Homology, Amino Acid ; Substrate Specificity ; Temperature ; tumor therapy ; zinc exopeptidase</subject><ispartof>Archives of biochemistry and biophysics, 1996-08, Vol.332 (1), p.8-18</ispartof><rights>1996 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1711b45569e1000d1eeeb8a7fd0f7d82ed7588e5048b9717d09ca45c0b86b0083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003986196903100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8806703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laethem, Ronald M.</creatorcontrib><creatorcontrib>Blumenkopf, Todd A.</creatorcontrib><creatorcontrib>Cory, Michael</creatorcontrib><creatorcontrib>Elwell, Lynn</creatorcontrib><creatorcontrib>Moxham, Cary P.</creatorcontrib><creatorcontrib>Ray, Paul H.</creatorcontrib><creatorcontrib>Walton, Leslie M.</creatorcontrib><creatorcontrib>Smith, Gary K.</creatorcontrib><title>Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA inSaccharomyces cerevisiae,the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band withMr34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted inkcat/Kmvalues of 57,000 and 19,000M−1s−1for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D,L-phenyllactate, we found unique esterase/peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate–α-phenylalanine (MTX-Phe) and methotrexate–α-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. Thekcat/Kmvalues for MTX-Phe were 440,000 and 90,000M−1s−1for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000M−1s−1for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60°C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Carboxypeptidases - chemistry</subject><subject>Carboxypeptidases - genetics</subject><subject>Carboxypeptidases - metabolism</subject><subject>Cattle</subject><subject>Cloning, Molecular</subject><subject>DNA Primers - genetics</subject><subject>Enzyme Precursors - chemistry</subject><subject>Enzyme Precursors - genetics</subject><subject>Enzyme Precursors - metabolism</subject><subject>Enzyme Stability</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Kinetics</subject><subject>methotrexate</subject><subject>Methotrexate - analogs &amp; derivatives</subject><subject>Methotrexate - metabolism</subject><subject>Methotrexate - therapeutic use</subject><subject>Molecular Sequence Data</subject><subject>Neoplasms - drug therapy</subject><subject>Pancreas - enzymology</subject><subject>Phenylalanine - analogs &amp; derivatives</subject><subject>Phenylalanine - metabolism</subject><subject>Phenylalanine - therapeutic use</subject><subject>preprocarboxypeptidase A1</subject><subject>preprocarboxypeptidase A2</subject><subject>Prodrugs - metabolism</subject><subject>Prodrugs - therapeutic use</subject><subject>protein purification</subject><subject>Rats</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Temperature</subject><subject>tumor therapy</subject><subject>zinc exopeptidase</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1PwkAQxTdGg4hevZn05K04Qz92eyQExYREDnre7Mc0rkJbd4sB_3pbId44TTLvzcu8H2O3CGMEyB-U1m6MRZGPIUE4Y0OEIo8hEek5GwJAEhcix0t2FcIHAGKaTwZsIATkHJIh-5zvGk8huLqKVGWj2bvyyrTk3Y9q-2VdRovtRlXRSlXGU7c00cpT42ujvK53-4aa1lkVKJriX8QpdXLNLkq1DnRznCP29jh_nS3i5cvT82y6jE2SFG2MHFGnWZYX1DUEi0SkheKlhZJbMSHLMyEog1TogiO3UBiVZga0yDWASEbs_pDbvfG1pdDKjQuG1mtVUb0NkosEOZ9gZxwfjMbXIXgqZePdRvm9RJA9XdnTlT1d2dPtDu6OyVu9IftvP-LsdHHQqav37cjLYBxVhqzzZFppa3cq-hd1XYoa</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Laethem, Ronald M.</creator><creator>Blumenkopf, Todd A.</creator><creator>Cory, Michael</creator><creator>Elwell, Lynn</creator><creator>Moxham, Cary P.</creator><creator>Ray, Paul H.</creator><creator>Walton, Leslie M.</creator><creator>Smith, Gary K.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960801</creationdate><title>Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2</title><author>Laethem, Ronald M. ; Blumenkopf, Todd A. ; Cory, Michael ; Elwell, Lynn ; Moxham, Cary P. ; Ray, Paul H. ; Walton, Leslie M. ; Smith, Gary K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1711b45569e1000d1eeeb8a7fd0f7d82ed7588e5048b9717d09ca45c0b86b0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Carboxypeptidases - chemistry</topic><topic>Carboxypeptidases - genetics</topic><topic>Carboxypeptidases - metabolism</topic><topic>Cattle</topic><topic>Cloning, Molecular</topic><topic>DNA Primers - genetics</topic><topic>Enzyme Precursors - chemistry</topic><topic>Enzyme Precursors - genetics</topic><topic>Enzyme Precursors - metabolism</topic><topic>Enzyme Stability</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Kinetics</topic><topic>methotrexate</topic><topic>Methotrexate - analogs &amp; derivatives</topic><topic>Methotrexate - metabolism</topic><topic>Methotrexate - therapeutic use</topic><topic>Molecular Sequence Data</topic><topic>Neoplasms - drug therapy</topic><topic>Pancreas - enzymology</topic><topic>Phenylalanine - analogs &amp; derivatives</topic><topic>Phenylalanine - metabolism</topic><topic>Phenylalanine - therapeutic use</topic><topic>preprocarboxypeptidase A1</topic><topic>preprocarboxypeptidase A2</topic><topic>Prodrugs - metabolism</topic><topic>Prodrugs - therapeutic use</topic><topic>protein purification</topic><topic>Rats</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Temperature</topic><topic>tumor therapy</topic><topic>zinc exopeptidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laethem, Ronald M.</creatorcontrib><creatorcontrib>Blumenkopf, Todd A.</creatorcontrib><creatorcontrib>Cory, Michael</creatorcontrib><creatorcontrib>Elwell, Lynn</creatorcontrib><creatorcontrib>Moxham, Cary P.</creatorcontrib><creatorcontrib>Ray, Paul H.</creatorcontrib><creatorcontrib>Walton, Leslie M.</creatorcontrib><creatorcontrib>Smith, Gary K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laethem, Ronald M.</au><au>Blumenkopf, Todd A.</au><au>Cory, Michael</au><au>Elwell, Lynn</au><au>Moxham, Cary P.</au><au>Ray, Paul H.</au><au>Walton, Leslie M.</au><au>Smith, Gary K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>1996-08-01</date><risdate>1996</risdate><volume>332</volume><issue>1</issue><spage>8</spage><epage>18</epage><pages>8-18</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA inSaccharomyces cerevisiae,the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band withMr34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted inkcat/Kmvalues of 57,000 and 19,000M−1s−1for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D,L-phenyllactate, we found unique esterase/peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate–α-phenylalanine (MTX-Phe) and methotrexate–α-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. Thekcat/Kmvalues for MTX-Phe were 440,000 and 90,000M−1s−1for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000M−1s−1for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60°C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8806703</pmid><doi>10.1006/abbi.1996.0310</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9861
ispartof Archives of biochemistry and biophysics, 1996-08, Vol.332 (1), p.8-18
issn 0003-9861
1096-0384
language eng
recordid cdi_proquest_miscellaneous_78317721
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Amino Acid Sequence
Animals
Base Sequence
Carboxypeptidases - chemistry
Carboxypeptidases - genetics
Carboxypeptidases - metabolism
Cattle
Cloning, Molecular
DNA Primers - genetics
Enzyme Precursors - chemistry
Enzyme Precursors - genetics
Enzyme Precursors - metabolism
Enzyme Stability
Gene Expression
Humans
Kinetics
methotrexate
Methotrexate - analogs & derivatives
Methotrexate - metabolism
Methotrexate - therapeutic use
Molecular Sequence Data
Neoplasms - drug therapy
Pancreas - enzymology
Phenylalanine - analogs & derivatives
Phenylalanine - metabolism
Phenylalanine - therapeutic use
preprocarboxypeptidase A1
preprocarboxypeptidase A2
Prodrugs - metabolism
Prodrugs - therapeutic use
protein purification
Rats
Saccharomyces cerevisiae - genetics
Sequence Homology, Amino Acid
Substrate Specificity
Temperature
tumor therapy
zinc exopeptidase
title Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20and%20Characterization%20of%20Human%20Pancreatic%20Preprocarboxypeptidase%20A1%20and%20Preprocarboxypeptidase%20A2&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Laethem,%20Ronald%20M.&rft.date=1996-08-01&rft.volume=332&rft.issue=1&rft.spage=8&rft.epage=18&rft.pages=8-18&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1006/abbi.1996.0310&rft_dat=%3Cproquest_cross%3E78317721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78317721&rft_id=info:pmid/8806703&rft_els_id=S0003986196903100&rfr_iscdi=true