Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2
We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clon...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 1996-08, Vol.332 (1), p.8-18 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | Archives of biochemistry and biophysics |
container_volume | 332 |
creator | Laethem, Ronald M. Blumenkopf, Todd A. Cory, Michael Elwell, Lynn Moxham, Cary P. Ray, Paul H. Walton, Leslie M. Smith, Gary K. |
description | We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA inSaccharomyces cerevisiae,the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band withMr34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted inkcat/Kmvalues of 57,000 and 19,000M−1s−1for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D,L-phenyllactate, we found unique esterase/peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate–α-phenylalanine (MTX-Phe) and methotrexate–α-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. Thekcat/Kmvalues for MTX-Phe were 440,000 and 90,000M−1s−1for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000M−1s−1for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60°C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach. |
doi_str_mv | 10.1006/abbi.1996.0310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78317721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986196903100</els_id><sourcerecordid>78317721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1711b45569e1000d1eeeb8a7fd0f7d82ed7588e5048b9717d09ca45c0b86b0083</originalsourceid><addsrcrecordid>eNp1kM1PwkAQxTdGg4hevZn05K04Qz92eyQExYREDnre7Mc0rkJbd4sB_3pbId44TTLvzcu8H2O3CGMEyB-U1m6MRZGPIUE4Y0OEIo8hEek5GwJAEhcix0t2FcIHAGKaTwZsIATkHJIh-5zvGk8huLqKVGWj2bvyyrTk3Y9q-2VdRovtRlXRSlXGU7c00cpT42ujvK53-4aa1lkVKJriX8QpdXLNLkq1DnRznCP29jh_nS3i5cvT82y6jE2SFG2MHFGnWZYX1DUEi0SkheKlhZJbMSHLMyEog1TogiO3UBiVZga0yDWASEbs_pDbvfG1pdDKjQuG1mtVUb0NkosEOZ9gZxwfjMbXIXgqZePdRvm9RJA9XdnTlT1d2dPtDu6OyVu9IftvP-LsdHHQqav37cjLYBxVhqzzZFppa3cq-hd1XYoa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78317721</pqid></control><display><type>article</type><title>Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Laethem, Ronald M. ; Blumenkopf, Todd A. ; Cory, Michael ; Elwell, Lynn ; Moxham, Cary P. ; Ray, Paul H. ; Walton, Leslie M. ; Smith, Gary K.</creator><creatorcontrib>Laethem, Ronald M. ; Blumenkopf, Todd A. ; Cory, Michael ; Elwell, Lynn ; Moxham, Cary P. ; Ray, Paul H. ; Walton, Leslie M. ; Smith, Gary K.</creatorcontrib><description>We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA inSaccharomyces cerevisiae,the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band withMr34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted inkcat/Kmvalues of 57,000 and 19,000M−1s−1for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D,L-phenyllactate, we found unique esterase/peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate–α-phenylalanine (MTX-Phe) and methotrexate–α-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. Thekcat/Kmvalues for MTX-Phe were 440,000 and 90,000M−1s−1for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000M−1s−1for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60°C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1006/abbi.1996.0310</identifier><identifier>PMID: 8806703</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Carboxypeptidases - chemistry ; Carboxypeptidases - genetics ; Carboxypeptidases - metabolism ; Cattle ; Cloning, Molecular ; DNA Primers - genetics ; Enzyme Precursors - chemistry ; Enzyme Precursors - genetics ; Enzyme Precursors - metabolism ; Enzyme Stability ; Gene Expression ; Humans ; Kinetics ; methotrexate ; Methotrexate - analogs & derivatives ; Methotrexate - metabolism ; Methotrexate - therapeutic use ; Molecular Sequence Data ; Neoplasms - drug therapy ; Pancreas - enzymology ; Phenylalanine - analogs & derivatives ; Phenylalanine - metabolism ; Phenylalanine - therapeutic use ; preprocarboxypeptidase A1 ; preprocarboxypeptidase A2 ; Prodrugs - metabolism ; Prodrugs - therapeutic use ; protein purification ; Rats ; Saccharomyces cerevisiae - genetics ; Sequence Homology, Amino Acid ; Substrate Specificity ; Temperature ; tumor therapy ; zinc exopeptidase</subject><ispartof>Archives of biochemistry and biophysics, 1996-08, Vol.332 (1), p.8-18</ispartof><rights>1996 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1711b45569e1000d1eeeb8a7fd0f7d82ed7588e5048b9717d09ca45c0b86b0083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003986196903100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8806703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laethem, Ronald M.</creatorcontrib><creatorcontrib>Blumenkopf, Todd A.</creatorcontrib><creatorcontrib>Cory, Michael</creatorcontrib><creatorcontrib>Elwell, Lynn</creatorcontrib><creatorcontrib>Moxham, Cary P.</creatorcontrib><creatorcontrib>Ray, Paul H.</creatorcontrib><creatorcontrib>Walton, Leslie M.</creatorcontrib><creatorcontrib>Smith, Gary K.</creatorcontrib><title>Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA inSaccharomyces cerevisiae,the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band withMr34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted inkcat/Kmvalues of 57,000 and 19,000M−1s−1for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D,L-phenyllactate, we found unique esterase/peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate–α-phenylalanine (MTX-Phe) and methotrexate–α-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. Thekcat/Kmvalues for MTX-Phe were 440,000 and 90,000M−1s−1for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000M−1s−1for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60°C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Carboxypeptidases - chemistry</subject><subject>Carboxypeptidases - genetics</subject><subject>Carboxypeptidases - metabolism</subject><subject>Cattle</subject><subject>Cloning, Molecular</subject><subject>DNA Primers - genetics</subject><subject>Enzyme Precursors - chemistry</subject><subject>Enzyme Precursors - genetics</subject><subject>Enzyme Precursors - metabolism</subject><subject>Enzyme Stability</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Kinetics</subject><subject>methotrexate</subject><subject>Methotrexate - analogs & derivatives</subject><subject>Methotrexate - metabolism</subject><subject>Methotrexate - therapeutic use</subject><subject>Molecular Sequence Data</subject><subject>Neoplasms - drug therapy</subject><subject>Pancreas - enzymology</subject><subject>Phenylalanine - analogs & derivatives</subject><subject>Phenylalanine - metabolism</subject><subject>Phenylalanine - therapeutic use</subject><subject>preprocarboxypeptidase A1</subject><subject>preprocarboxypeptidase A2</subject><subject>Prodrugs - metabolism</subject><subject>Prodrugs - therapeutic use</subject><subject>protein purification</subject><subject>Rats</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Sequence Homology, Amino Acid</subject><subject>Substrate Specificity</subject><subject>Temperature</subject><subject>tumor therapy</subject><subject>zinc exopeptidase</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1PwkAQxTdGg4hevZn05K04Qz92eyQExYREDnre7Mc0rkJbd4sB_3pbId44TTLvzcu8H2O3CGMEyB-U1m6MRZGPIUE4Y0OEIo8hEek5GwJAEhcix0t2FcIHAGKaTwZsIATkHJIh-5zvGk8huLqKVGWj2bvyyrTk3Y9q-2VdRovtRlXRSlXGU7c00cpT42ujvK53-4aa1lkVKJriX8QpdXLNLkq1DnRznCP29jh_nS3i5cvT82y6jE2SFG2MHFGnWZYX1DUEi0SkheKlhZJbMSHLMyEog1TogiO3UBiVZga0yDWASEbs_pDbvfG1pdDKjQuG1mtVUb0NkosEOZ9gZxwfjMbXIXgqZePdRvm9RJA9XdnTlT1d2dPtDu6OyVu9IftvP-LsdHHQqav37cjLYBxVhqzzZFppa3cq-hd1XYoa</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>Laethem, Ronald M.</creator><creator>Blumenkopf, Todd A.</creator><creator>Cory, Michael</creator><creator>Elwell, Lynn</creator><creator>Moxham, Cary P.</creator><creator>Ray, Paul H.</creator><creator>Walton, Leslie M.</creator><creator>Smith, Gary K.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960801</creationdate><title>Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2</title><author>Laethem, Ronald M. ; Blumenkopf, Todd A. ; Cory, Michael ; Elwell, Lynn ; Moxham, Cary P. ; Ray, Paul H. ; Walton, Leslie M. ; Smith, Gary K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1711b45569e1000d1eeeb8a7fd0f7d82ed7588e5048b9717d09ca45c0b86b0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Carboxypeptidases - chemistry</topic><topic>Carboxypeptidases - genetics</topic><topic>Carboxypeptidases - metabolism</topic><topic>Cattle</topic><topic>Cloning, Molecular</topic><topic>DNA Primers - genetics</topic><topic>Enzyme Precursors - chemistry</topic><topic>Enzyme Precursors - genetics</topic><topic>Enzyme Precursors - metabolism</topic><topic>Enzyme Stability</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Kinetics</topic><topic>methotrexate</topic><topic>Methotrexate - analogs & derivatives</topic><topic>Methotrexate - metabolism</topic><topic>Methotrexate - therapeutic use</topic><topic>Molecular Sequence Data</topic><topic>Neoplasms - drug therapy</topic><topic>Pancreas - enzymology</topic><topic>Phenylalanine - analogs & derivatives</topic><topic>Phenylalanine - metabolism</topic><topic>Phenylalanine - therapeutic use</topic><topic>preprocarboxypeptidase A1</topic><topic>preprocarboxypeptidase A2</topic><topic>Prodrugs - metabolism</topic><topic>Prodrugs - therapeutic use</topic><topic>protein purification</topic><topic>Rats</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Sequence Homology, Amino Acid</topic><topic>Substrate Specificity</topic><topic>Temperature</topic><topic>tumor therapy</topic><topic>zinc exopeptidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laethem, Ronald M.</creatorcontrib><creatorcontrib>Blumenkopf, Todd A.</creatorcontrib><creatorcontrib>Cory, Michael</creatorcontrib><creatorcontrib>Elwell, Lynn</creatorcontrib><creatorcontrib>Moxham, Cary P.</creatorcontrib><creatorcontrib>Ray, Paul H.</creatorcontrib><creatorcontrib>Walton, Leslie M.</creatorcontrib><creatorcontrib>Smith, Gary K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laethem, Ronald M.</au><au>Blumenkopf, Todd A.</au><au>Cory, Michael</au><au>Elwell, Lynn</au><au>Moxham, Cary P.</au><au>Ray, Paul H.</au><au>Walton, Leslie M.</au><au>Smith, Gary K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>1996-08-01</date><risdate>1996</risdate><volume>332</volume><issue>1</issue><spage>8</spage><epage>18</epage><pages>8-18</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>We are investigating the potential utility of human carboxypeptidases A in antibody-directed enzyme prodrug therapy (ADEPT). Hybridization screening of a human pancreatic cDNA library with cDNA probes that encoded either rat carboxypeptidase A1 (rCPA1) or carboxypeptidase A2 (rCPA2) was used to clone the human prepro-CPA homologs. After expression of the respective pro-hCPA cDNA inSaccharomyces cerevisiae,the enzymes were purified to homogeneity by a combination of hydrophobic and ion-exchange chromatography. Purified hCPA1 and hCPA2 migrate as a single protein band withMr34,000 when subjected to gel electrophoresis in the presence of sodium dodecyl sulfate under reducing conditions. Kinetic studies of the purified enzymes with hippuryl-L-phenylalanine resulted inkcat/Kmvalues of 57,000 and 19,000M−1s−1for hCPA1 and hCPA2, respectively. Using the ester substrate, hippuryl-D,L-phenyllactate, we found unique esterase/peptidase specific activity ratios among hCPA1, hCPA2, rCPA1, and bovine CPA (bCPA) ranging from 13 to 325. Two potential ADEPT substrates, methotrexate–α-phenylalanine (MTX-Phe) and methotrexate–α-(1-naphthyl)alanine (MTX-naphthylAla) were also analyzed. Thekcat/Kmvalues for MTX-Phe were 440,000 and 90,000M−1s−1for hCPA1 and hCPA2, respectively, and for MTX-naphthylAla these values were 1400 and 1,400,000M−1s−1for hCPA1 and hCPA2, respectively. The kinetic data show that hCPA2 has a larger substrate binding site than the hCPA1 enzyme. Differences between hCPA1 and hCPA2 were also observed in thermal stability experiments at 60°C where the half-life for thermal denaturation of hCPA2 is eightfold longer than that for hCPA1. These experiments indicate that hCPA1 and hCPA2 are potential candidates for use in a human-based ADEPT approach.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8806703</pmid><doi>10.1006/abbi.1996.0310</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-9861 |
ispartof | Archives of biochemistry and biophysics, 1996-08, Vol.332 (1), p.8-18 |
issn | 0003-9861 1096-0384 |
language | eng |
recordid | cdi_proquest_miscellaneous_78317721 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Amino Acid Sequence Animals Base Sequence Carboxypeptidases - chemistry Carboxypeptidases - genetics Carboxypeptidases - metabolism Cattle Cloning, Molecular DNA Primers - genetics Enzyme Precursors - chemistry Enzyme Precursors - genetics Enzyme Precursors - metabolism Enzyme Stability Gene Expression Humans Kinetics methotrexate Methotrexate - analogs & derivatives Methotrexate - metabolism Methotrexate - therapeutic use Molecular Sequence Data Neoplasms - drug therapy Pancreas - enzymology Phenylalanine - analogs & derivatives Phenylalanine - metabolism Phenylalanine - therapeutic use preprocarboxypeptidase A1 preprocarboxypeptidase A2 Prodrugs - metabolism Prodrugs - therapeutic use protein purification Rats Saccharomyces cerevisiae - genetics Sequence Homology, Amino Acid Substrate Specificity Temperature tumor therapy zinc exopeptidase |
title | Expression and Characterization of Human Pancreatic Preprocarboxypeptidase A1 and Preprocarboxypeptidase A2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20and%20Characterization%20of%20Human%20Pancreatic%20Preprocarboxypeptidase%20A1%20and%20Preprocarboxypeptidase%20A2&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Laethem,%20Ronald%20M.&rft.date=1996-08-01&rft.volume=332&rft.issue=1&rft.spage=8&rft.epage=18&rft.pages=8-18&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1006/abbi.1996.0310&rft_dat=%3Cproquest_cross%3E78317721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78317721&rft_id=info:pmid/8806703&rft_els_id=S0003986196903100&rfr_iscdi=true |