Identification of seven rat axonemal dynein heavy chain genes: expression during ciliated cell differentiation

Axonemal dyneins are molecular motors that drive the beating of cilia and flagella. We report here the identification and partial cloning of seven unique axonemal dynein heavy chains from rat tracheal epithelial (RTE) cells. Combinations of axonemal-specific and degenerate primers to conserved regio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 1996-01, Vol.7 (1), p.71-79
Hauptverfasser: Andrews, K L, Nettesheim, P, Asai, D J, Ostrowski, L E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Axonemal dyneins are molecular motors that drive the beating of cilia and flagella. We report here the identification and partial cloning of seven unique axonemal dynein heavy chains from rat tracheal epithelial (RTE) cells. Combinations of axonemal-specific and degenerate primers to conserved regions around the catalytic site of dynein heavy chains were used to obtain cDNA fragments of rat dynein heavy chains. Southern analysis indicates that these are single copy genes, with one possible exception, and Northern analysis of RNA from RTE cells shows a transcript of approximately 15 kb for each gene. Expression of these genes was restricted to tissues containing axonemes (trachea, testis, and brain). A time course analysis during ciliated cell differentiation of RTE cells in culture demonstrated that the expression of axonemal dynein heavy chains correlated with the development of ciliated cells, while cytoplasmic dynein heavy chain expression remained constant. In addition, factors that regulate the development of ciliated cells in culture regulated the expression of axonemal dynein heavy chains in a parallel fashion. These are the first mammalian dynein heavy chain genes shown to be expressed specifically in axonemal tissues. Identification of the mechanisms that regulate the cell-specific expression of these axonemal dynein heavy chains will further our understanding of the process of ciliated cell differentiation.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.7.1.71