How positionally stable is a transesophageal echocardiographic probe? Implications for three-dimensional reconstruction
Three-dimensional (3D) reconstruction from a single esophageal scanning position requires a stable relationship between the probe and the heart. The purpose of this study was to examine the movement of a transesophageal echocardiographic probe during 3D image acquisition. A new dual-axis multiplane...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society of Echocardiography 1996-05, Vol.9 (3), p.266-273 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | 3 |
container_start_page | 266 |
container_title | Journal of the American Society of Echocardiography |
container_volume | 9 |
creator | Legget, Malcolm E. Martin, Roy W. Sheehan, Florence H. Bashein, Gerard Bolson, Edward L. Li, Xian-Ning Leotta, Daniel Otto, Catherine M. |
description | Three-dimensional (3D) reconstruction from a single esophageal scanning position requires a stable relationship between the probe and the heart. The purpose of this study was to examine the movement of a transesophageal echocardiographic probe during 3D image acquisition. A new dual-axis multiplane probe was used that includes a miniature (6 × 6 × 9 mm) magnetic sensor in the tip. The sensor identifies the probe's 3D position and 3D orientation in space with respect to the location of a magnetic field generator placed beneath the subject. In vivo 3D scanning was performed in five anesthetized, ventilated dogs, with positional determinations acquired every 66 msec. Probe movement was estimated by computing the deviations of each x, y, and z position and orientation determination, compared with the average values during each 3D scan or cardiac cycle. Ten 3D scans were analyzed, involving 263 cardiac cycles and 2328 determinations. The range and SD of the translational movement of the transducer were 2.3 and 0.8 mm, 1.7 and 0.5 mm, and 2.4 and 0.7 mm in x, y, and z directions, respectively, during 3D scanning. Translational movement was more dominant than was rotational movement. Misregistration of three-dimensional reconstructions may be due to subtle probe movement. The ability to monitor probe movement may be helpful in optimizing 3D data sets. |
doi_str_mv | 10.1016/S0894-7317(96)90139-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78232649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089473179690139X</els_id><sourcerecordid>78232649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-788ff8c56972041dc523979651140ed486ac75dea28a62ef42aa75e7bed7f32e3</originalsourceid><addsrcrecordid>eNqFkEtP3DAQx62qFV1oPwKST1U5BGwnfp0QQrQgIXEoSNysWXvCukriYGdBfHuyD3HlNIf_Y2Z-hBxzdsoZV2f_mLFNpWuuf1t1YhmvbfX4hSw4s7pS2sqvZPFh-U4OS_nPGJOGsQNyYHStGLML8nqdXumYSpxiGqDr3miZYNkhjYUCnTIMBUsaV_CE0FH0q-Qhh5ieMoyr6OmY0xLP6U0_dtHDpqTQNmU6rTJiFWKPQ9k204x-Fqe89hvXD_Ktha7gz_08Ig9_ru4vr6vbu783lxe3lRdaTpU2pm2Nl8pqwRoevBS11VZJzhuGoTEKvJYBQRhQAttGAGiJeolBt7XA-oj82vXOhz6vsUyuj8Vj18GAaV2cNqIWqrGzUe6MPqdSMrZuzLGH_OY4cxvgbgvcbWg6q9wWuHucc8f7Betlj-EjtSc86-c7HecvXyJmV3zEwWOIM5HJhRQ_2fAORXqT2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78232649</pqid></control><display><type>article</type><title>How positionally stable is a transesophageal echocardiographic probe? Implications for three-dimensional reconstruction</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Legget, Malcolm E. ; Martin, Roy W. ; Sheehan, Florence H. ; Bashein, Gerard ; Bolson, Edward L. ; Li, Xian-Ning ; Leotta, Daniel ; Otto, Catherine M.</creator><creatorcontrib>Legget, Malcolm E. ; Martin, Roy W. ; Sheehan, Florence H. ; Bashein, Gerard ; Bolson, Edward L. ; Li, Xian-Ning ; Leotta, Daniel ; Otto, Catherine M.</creatorcontrib><description>Three-dimensional (3D) reconstruction from a single esophageal scanning position requires a stable relationship between the probe and the heart. The purpose of this study was to examine the movement of a transesophageal echocardiographic probe during 3D image acquisition. A new dual-axis multiplane probe was used that includes a miniature (6 × 6 × 9 mm) magnetic sensor in the tip. The sensor identifies the probe's 3D position and 3D orientation in space with respect to the location of a magnetic field generator placed beneath the subject. In vivo 3D scanning was performed in five anesthetized, ventilated dogs, with positional determinations acquired every 66 msec. Probe movement was estimated by computing the deviations of each x, y, and z position and orientation determination, compared with the average values during each 3D scan or cardiac cycle. Ten 3D scans were analyzed, involving 263 cardiac cycles and 2328 determinations. The range and SD of the translational movement of the transducer were 2.3 and 0.8 mm, 1.7 and 0.5 mm, and 2.4 and 0.7 mm in x, y, and z directions, respectively, during 3D scanning. Translational movement was more dominant than was rotational movement. Misregistration of three-dimensional reconstructions may be due to subtle probe movement. The ability to monitor probe movement may be helpful in optimizing 3D data sets.</description><identifier>ISSN: 0894-7317</identifier><identifier>EISSN: 1097-6795</identifier><identifier>DOI: 10.1016/S0894-7317(96)90139-X</identifier><identifier>PMID: 8736009</identifier><language>eng</language><publisher>United States: Mosby, Inc</publisher><subject>Animals ; Computer Graphics - instrumentation ; Dogs ; Echocardiography, Three-Dimensional - instrumentation ; Echocardiography, Transesophageal - instrumentation ; Feasibility Studies ; Hemodynamics - physiology ; Humans ; Image Processing, Computer-Assisted - instrumentation ; Models, Cardiovascular ; Myocardial Contraction - physiology ; Transducers</subject><ispartof>Journal of the American Society of Echocardiography, 1996-05, Vol.9 (3), p.266-273</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-788ff8c56972041dc523979651140ed486ac75dea28a62ef42aa75e7bed7f32e3</citedby><cites>FETCH-LOGICAL-c275t-788ff8c56972041dc523979651140ed486ac75dea28a62ef42aa75e7bed7f32e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0894-7317(96)90139-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8736009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Legget, Malcolm E.</creatorcontrib><creatorcontrib>Martin, Roy W.</creatorcontrib><creatorcontrib>Sheehan, Florence H.</creatorcontrib><creatorcontrib>Bashein, Gerard</creatorcontrib><creatorcontrib>Bolson, Edward L.</creatorcontrib><creatorcontrib>Li, Xian-Ning</creatorcontrib><creatorcontrib>Leotta, Daniel</creatorcontrib><creatorcontrib>Otto, Catherine M.</creatorcontrib><title>How positionally stable is a transesophageal echocardiographic probe? Implications for three-dimensional reconstruction</title><title>Journal of the American Society of Echocardiography</title><addtitle>J Am Soc Echocardiogr</addtitle><description>Three-dimensional (3D) reconstruction from a single esophageal scanning position requires a stable relationship between the probe and the heart. The purpose of this study was to examine the movement of a transesophageal echocardiographic probe during 3D image acquisition. A new dual-axis multiplane probe was used that includes a miniature (6 × 6 × 9 mm) magnetic sensor in the tip. The sensor identifies the probe's 3D position and 3D orientation in space with respect to the location of a magnetic field generator placed beneath the subject. In vivo 3D scanning was performed in five anesthetized, ventilated dogs, with positional determinations acquired every 66 msec. Probe movement was estimated by computing the deviations of each x, y, and z position and orientation determination, compared with the average values during each 3D scan or cardiac cycle. Ten 3D scans were analyzed, involving 263 cardiac cycles and 2328 determinations. The range and SD of the translational movement of the transducer were 2.3 and 0.8 mm, 1.7 and 0.5 mm, and 2.4 and 0.7 mm in x, y, and z directions, respectively, during 3D scanning. Translational movement was more dominant than was rotational movement. Misregistration of three-dimensional reconstructions may be due to subtle probe movement. The ability to monitor probe movement may be helpful in optimizing 3D data sets.</description><subject>Animals</subject><subject>Computer Graphics - instrumentation</subject><subject>Dogs</subject><subject>Echocardiography, Three-Dimensional - instrumentation</subject><subject>Echocardiography, Transesophageal - instrumentation</subject><subject>Feasibility Studies</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - instrumentation</subject><subject>Models, Cardiovascular</subject><subject>Myocardial Contraction - physiology</subject><subject>Transducers</subject><issn>0894-7317</issn><issn>1097-6795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtP3DAQx62qFV1oPwKST1U5BGwnfp0QQrQgIXEoSNysWXvCukriYGdBfHuyD3HlNIf_Y2Z-hBxzdsoZV2f_mLFNpWuuf1t1YhmvbfX4hSw4s7pS2sqvZPFh-U4OS_nPGJOGsQNyYHStGLML8nqdXumYSpxiGqDr3miZYNkhjYUCnTIMBUsaV_CE0FH0q-Qhh5ieMoyr6OmY0xLP6U0_dtHDpqTQNmU6rTJiFWKPQ9k204x-Fqe89hvXD_Ktha7gz_08Ig9_ru4vr6vbu783lxe3lRdaTpU2pm2Nl8pqwRoevBS11VZJzhuGoTEKvJYBQRhQAttGAGiJeolBt7XA-oj82vXOhz6vsUyuj8Vj18GAaV2cNqIWqrGzUe6MPqdSMrZuzLGH_OY4cxvgbgvcbWg6q9wWuHucc8f7Betlj-EjtSc86-c7HecvXyJmV3zEwWOIM5HJhRQ_2fAORXqT2g</recordid><startdate>199605</startdate><enddate>199605</enddate><creator>Legget, Malcolm E.</creator><creator>Martin, Roy W.</creator><creator>Sheehan, Florence H.</creator><creator>Bashein, Gerard</creator><creator>Bolson, Edward L.</creator><creator>Li, Xian-Ning</creator><creator>Leotta, Daniel</creator><creator>Otto, Catherine M.</creator><general>Mosby, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199605</creationdate><title>How positionally stable is a transesophageal echocardiographic probe? Implications for three-dimensional reconstruction</title><author>Legget, Malcolm E. ; Martin, Roy W. ; Sheehan, Florence H. ; Bashein, Gerard ; Bolson, Edward L. ; Li, Xian-Ning ; Leotta, Daniel ; Otto, Catherine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-788ff8c56972041dc523979651140ed486ac75dea28a62ef42aa75e7bed7f32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Computer Graphics - instrumentation</topic><topic>Dogs</topic><topic>Echocardiography, Three-Dimensional - instrumentation</topic><topic>Echocardiography, Transesophageal - instrumentation</topic><topic>Feasibility Studies</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - instrumentation</topic><topic>Models, Cardiovascular</topic><topic>Myocardial Contraction - physiology</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Legget, Malcolm E.</creatorcontrib><creatorcontrib>Martin, Roy W.</creatorcontrib><creatorcontrib>Sheehan, Florence H.</creatorcontrib><creatorcontrib>Bashein, Gerard</creatorcontrib><creatorcontrib>Bolson, Edward L.</creatorcontrib><creatorcontrib>Li, Xian-Ning</creatorcontrib><creatorcontrib>Leotta, Daniel</creatorcontrib><creatorcontrib>Otto, Catherine M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Society of Echocardiography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Legget, Malcolm E.</au><au>Martin, Roy W.</au><au>Sheehan, Florence H.</au><au>Bashein, Gerard</au><au>Bolson, Edward L.</au><au>Li, Xian-Ning</au><au>Leotta, Daniel</au><au>Otto, Catherine M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How positionally stable is a transesophageal echocardiographic probe? Implications for three-dimensional reconstruction</atitle><jtitle>Journal of the American Society of Echocardiography</jtitle><addtitle>J Am Soc Echocardiogr</addtitle><date>1996-05</date><risdate>1996</risdate><volume>9</volume><issue>3</issue><spage>266</spage><epage>273</epage><pages>266-273</pages><issn>0894-7317</issn><eissn>1097-6795</eissn><abstract>Three-dimensional (3D) reconstruction from a single esophageal scanning position requires a stable relationship between the probe and the heart. The purpose of this study was to examine the movement of a transesophageal echocardiographic probe during 3D image acquisition. A new dual-axis multiplane probe was used that includes a miniature (6 × 6 × 9 mm) magnetic sensor in the tip. The sensor identifies the probe's 3D position and 3D orientation in space with respect to the location of a magnetic field generator placed beneath the subject. In vivo 3D scanning was performed in five anesthetized, ventilated dogs, with positional determinations acquired every 66 msec. Probe movement was estimated by computing the deviations of each x, y, and z position and orientation determination, compared with the average values during each 3D scan or cardiac cycle. Ten 3D scans were analyzed, involving 263 cardiac cycles and 2328 determinations. The range and SD of the translational movement of the transducer were 2.3 and 0.8 mm, 1.7 and 0.5 mm, and 2.4 and 0.7 mm in x, y, and z directions, respectively, during 3D scanning. Translational movement was more dominant than was rotational movement. Misregistration of three-dimensional reconstructions may be due to subtle probe movement. The ability to monitor probe movement may be helpful in optimizing 3D data sets.</abstract><cop>United States</cop><pub>Mosby, Inc</pub><pmid>8736009</pmid><doi>10.1016/S0894-7317(96)90139-X</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-7317 |
ispartof | Journal of the American Society of Echocardiography, 1996-05, Vol.9 (3), p.266-273 |
issn | 0894-7317 1097-6795 |
language | eng |
recordid | cdi_proquest_miscellaneous_78232649 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Computer Graphics - instrumentation Dogs Echocardiography, Three-Dimensional - instrumentation Echocardiography, Transesophageal - instrumentation Feasibility Studies Hemodynamics - physiology Humans Image Processing, Computer-Assisted - instrumentation Models, Cardiovascular Myocardial Contraction - physiology Transducers |
title | How positionally stable is a transesophageal echocardiographic probe? Implications for three-dimensional reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20positionally%20stable%20is%20a%20transesophageal%20echocardiographic%20probe?%20Implications%20for%20three-dimensional%20reconstruction&rft.jtitle=Journal%20of%20the%20American%20Society%20of%20Echocardiography&rft.au=Legget,%20Malcolm%20E.&rft.date=1996-05&rft.volume=9&rft.issue=3&rft.spage=266&rft.epage=273&rft.pages=266-273&rft.issn=0894-7317&rft.eissn=1097-6795&rft_id=info:doi/10.1016/S0894-7317(96)90139-X&rft_dat=%3Cproquest_cross%3E78232649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78232649&rft_id=info:pmid/8736009&rft_els_id=S089473179690139X&rfr_iscdi=true |