Towards a texture naming system: Identifying relevant dimensions of texture

Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vision research (Oxford) 1996-06, Vol.36 (11), p.1649-1669
Hauptverfasser: Ravishankar Rao, A., Lohse, Gerald L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1669
container_issue 11
container_start_page 1649
container_title Vision research (Oxford)
container_volume 36
creator Ravishankar Rao, A.
Lohse, Gerald L.
description Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is what textural features are important in texture perception, and how they are used. We designed an experiment to help identifiy the relevant higher order features of texture perceived by humans. We used twenty subjects, who were asked to rate 56 pictures from Brodatz's album on 12 nine-point Likert scales. Each subject was also asked to group these pictures into as many classes as desired. We applied the techniques of hierarchical cluster analysis and non-parametric multidimensional scaling (MDS) to the pooled similarity matrix generated from the subjects' groupings. We used Classification and Regression Tree Analysis (CART), discriminant analysis, and principal component analysis on the data from the scale ratings. The clusters generated from hierarchical cluster analysis remained intact in the MDS plots. We found that the MDS solutions fit the data well. The stress in the three-dimensional case is 0.12. The CART and discriminant analyses provided further justification for our interpretation. The three orthogonal dimensions we identified for texture are repetitive vs non-repetitive; high-contrast and non-directional vs low-contrast and directional; granular, coarse and low-complexity vs non-granular, fine and high-complexity.
doi_str_mv 10.1016/0042-6989(95)00202-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78228948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0042698995002022</els_id><sourcerecordid>78228948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-afd49afbf9b47be136b24f8e8a821cc00657284e8af05339d587adb869b4413f3</originalsourceid><addsrcrecordid>eNp9kMFO3DAURS1EBcOUPwApC1S1i4Dt2I7dRaVqROkIJDZ0bTn2c-UqccBOhs7fN2GGWXb15PfOvbIOQhcEXxNMxA3GjJZCSfVZ8S8YU0xLeoQWRNay5IKJY7Q4IKfoLOc_GOOaU3WCTmTNFRNige6f-leTXC5MMcDfYUxQRNOF-LvI2zxA97VYO4hD8Nt5l6CFjYlD4UIHMYc-5qL378mP6IM3bYbz_VyiXz9un1Y_y4fHu_Xq-0NpmZJDabxjyvjGq4bVDZBKNJR5CdJISqzFWPCaSja9PeZVpRyXtXGNFBPPSOWrJfq0631O_csIedBdyBba1kTox6xrSalUTE4g24E29Tkn8Po5hc6krSZYzw71LEjPgrTi-s2hplPsct8_Nh24Q2gvbbpf7e8mW9P6ZKIN-YBVhNSczzXfdhhMLjYBks42QLTgQgI7aNeH___jH1wvjc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78228948</pqid></control><display><type>article</type><title>Towards a texture naming system: Identifying relevant dimensions of texture</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ravishankar Rao, A. ; Lohse, Gerald L.</creator><creatorcontrib>Ravishankar Rao, A. ; Lohse, Gerald L.</creatorcontrib><description>Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is what textural features are important in texture perception, and how they are used. We designed an experiment to help identifiy the relevant higher order features of texture perceived by humans. We used twenty subjects, who were asked to rate 56 pictures from Brodatz's album on 12 nine-point Likert scales. Each subject was also asked to group these pictures into as many classes as desired. We applied the techniques of hierarchical cluster analysis and non-parametric multidimensional scaling (MDS) to the pooled similarity matrix generated from the subjects' groupings. We used Classification and Regression Tree Analysis (CART), discriminant analysis, and principal component analysis on the data from the scale ratings. The clusters generated from hierarchical cluster analysis remained intact in the MDS plots. We found that the MDS solutions fit the data well. The stress in the three-dimensional case is 0.12. The CART and discriminant analyses provided further justification for our interpretation. The three orthogonal dimensions we identified for texture are repetitive vs non-repetitive; high-contrast and non-directional vs low-contrast and directional; granular, coarse and low-complexity vs non-granular, fine and high-complexity.</description><identifier>ISSN: 0042-6989</identifier><identifier>EISSN: 1878-5646</identifier><identifier>DOI: 10.1016/0042-6989(95)00202-2</identifier><identifier>PMID: 8759466</identifier><identifier>CODEN: VISRAM</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adult ; Biological and medical sciences ; Classification ; Cluster Analysis ; Contrast Sensitivity ; Directionality ; Discriminant Analysis ; Feature extraction ; Form Perception - classification ; Fundamental and applied biological sciences. Psychology ; Human texture perception ; Humans ; Image databases ; Perception ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Randomness ; Terminology as Topic ; Vision ; Visualization Repetition</subject><ispartof>Vision research (Oxford), 1996-06, Vol.36 (11), p.1649-1669</ispartof><rights>1996 Elsevier Science Ltd</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-afd49afbf9b47be136b24f8e8a821cc00657284e8af05339d587adb869b4413f3</citedby><cites>FETCH-LOGICAL-c498t-afd49afbf9b47be136b24f8e8a821cc00657284e8af05339d587adb869b4413f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0042-6989(95)00202-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3117552$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8759466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravishankar Rao, A.</creatorcontrib><creatorcontrib>Lohse, Gerald L.</creatorcontrib><title>Towards a texture naming system: Identifying relevant dimensions of texture</title><title>Vision research (Oxford)</title><addtitle>Vision Res</addtitle><description>Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is what textural features are important in texture perception, and how they are used. We designed an experiment to help identifiy the relevant higher order features of texture perceived by humans. We used twenty subjects, who were asked to rate 56 pictures from Brodatz's album on 12 nine-point Likert scales. Each subject was also asked to group these pictures into as many classes as desired. We applied the techniques of hierarchical cluster analysis and non-parametric multidimensional scaling (MDS) to the pooled similarity matrix generated from the subjects' groupings. We used Classification and Regression Tree Analysis (CART), discriminant analysis, and principal component analysis on the data from the scale ratings. The clusters generated from hierarchical cluster analysis remained intact in the MDS plots. We found that the MDS solutions fit the data well. The stress in the three-dimensional case is 0.12. The CART and discriminant analyses provided further justification for our interpretation. The three orthogonal dimensions we identified for texture are repetitive vs non-repetitive; high-contrast and non-directional vs low-contrast and directional; granular, coarse and low-complexity vs non-granular, fine and high-complexity.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Contrast Sensitivity</subject><subject>Directionality</subject><subject>Discriminant Analysis</subject><subject>Feature extraction</subject><subject>Form Perception - classification</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human texture perception</subject><subject>Humans</subject><subject>Image databases</subject><subject>Perception</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Randomness</subject><subject>Terminology as Topic</subject><subject>Vision</subject><subject>Visualization Repetition</subject><issn>0042-6989</issn><issn>1878-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO3DAURS1EBcOUPwApC1S1i4Dt2I7dRaVqROkIJDZ0bTn2c-UqccBOhs7fN2GGWXb15PfOvbIOQhcEXxNMxA3GjJZCSfVZ8S8YU0xLeoQWRNay5IKJY7Q4IKfoLOc_GOOaU3WCTmTNFRNige6f-leTXC5MMcDfYUxQRNOF-LvI2zxA97VYO4hD8Nt5l6CFjYlD4UIHMYc-5qL378mP6IM3bYbz_VyiXz9un1Y_y4fHu_Xq-0NpmZJDabxjyvjGq4bVDZBKNJR5CdJISqzFWPCaSja9PeZVpRyXtXGNFBPPSOWrJfq0631O_csIedBdyBba1kTox6xrSalUTE4g24E29Tkn8Po5hc6krSZYzw71LEjPgrTi-s2hplPsct8_Nh24Q2gvbbpf7e8mW9P6ZKIN-YBVhNSczzXfdhhMLjYBks42QLTgQgI7aNeH___jH1wvjc4</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Ravishankar Rao, A.</creator><creator>Lohse, Gerald L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960601</creationdate><title>Towards a texture naming system: Identifying relevant dimensions of texture</title><author>Ravishankar Rao, A. ; Lohse, Gerald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-afd49afbf9b47be136b24f8e8a821cc00657284e8af05339d587adb869b4413f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Contrast Sensitivity</topic><topic>Directionality</topic><topic>Discriminant Analysis</topic><topic>Feature extraction</topic><topic>Form Perception - classification</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human texture perception</topic><topic>Humans</topic><topic>Image databases</topic><topic>Perception</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Randomness</topic><topic>Terminology as Topic</topic><topic>Vision</topic><topic>Visualization Repetition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravishankar Rao, A.</creatorcontrib><creatorcontrib>Lohse, Gerald L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Vision research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravishankar Rao, A.</au><au>Lohse, Gerald L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a texture naming system: Identifying relevant dimensions of texture</atitle><jtitle>Vision research (Oxford)</jtitle><addtitle>Vision Res</addtitle><date>1996-06-01</date><risdate>1996</risdate><volume>36</volume><issue>11</issue><spage>1649</spage><epage>1669</epage><pages>1649-1669</pages><issn>0042-6989</issn><eissn>1878-5646</eissn><coden>VISRAM</coden><abstract>Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is what textural features are important in texture perception, and how they are used. We designed an experiment to help identifiy the relevant higher order features of texture perceived by humans. We used twenty subjects, who were asked to rate 56 pictures from Brodatz's album on 12 nine-point Likert scales. Each subject was also asked to group these pictures into as many classes as desired. We applied the techniques of hierarchical cluster analysis and non-parametric multidimensional scaling (MDS) to the pooled similarity matrix generated from the subjects' groupings. We used Classification and Regression Tree Analysis (CART), discriminant analysis, and principal component analysis on the data from the scale ratings. The clusters generated from hierarchical cluster analysis remained intact in the MDS plots. We found that the MDS solutions fit the data well. The stress in the three-dimensional case is 0.12. The CART and discriminant analyses provided further justification for our interpretation. The three orthogonal dimensions we identified for texture are repetitive vs non-repetitive; high-contrast and non-directional vs low-contrast and directional; granular, coarse and low-complexity vs non-granular, fine and high-complexity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>8759466</pmid><doi>10.1016/0042-6989(95)00202-2</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0042-6989
ispartof Vision research (Oxford), 1996-06, Vol.36 (11), p.1649-1669
issn 0042-6989
1878-5646
language eng
recordid cdi_proquest_miscellaneous_78228948
source MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Adult
Biological and medical sciences
Classification
Cluster Analysis
Contrast Sensitivity
Directionality
Discriminant Analysis
Feature extraction
Form Perception - classification
Fundamental and applied biological sciences. Psychology
Human texture perception
Humans
Image databases
Perception
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Randomness
Terminology as Topic
Vision
Visualization Repetition
title Towards a texture naming system: Identifying relevant dimensions of texture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20texture%20naming%20system:%20Identifying%20relevant%20dimensions%20of%20texture&rft.jtitle=Vision%20research%20(Oxford)&rft.au=Ravishankar%20Rao,%20A.&rft.date=1996-06-01&rft.volume=36&rft.issue=11&rft.spage=1649&rft.epage=1669&rft.pages=1649-1669&rft.issn=0042-6989&rft.eissn=1878-5646&rft.coden=VISRAM&rft_id=info:doi/10.1016/0042-6989(95)00202-2&rft_dat=%3Cproquest_cross%3E78228948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78228948&rft_id=info:pmid/8759466&rft_els_id=0042698995002022&rfr_iscdi=true