Towards a texture naming system: Identifying relevant dimensions of texture
Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is...
Gespeichert in:
Veröffentlicht in: | Vision research (Oxford) 1996-06, Vol.36 (11), p.1649-1669 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1669 |
---|---|
container_issue | 11 |
container_start_page | 1649 |
container_title | Vision research (Oxford) |
container_volume | 36 |
creator | Ravishankar Rao, A. Lohse, Gerald L. |
description | Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is what textural features are important in texture perception, and how they are used. We designed an experiment to help identifiy the relevant higher order features of texture perceived by humans. We used twenty subjects, who were asked to rate 56 pictures from Brodatz's album on 12 nine-point Likert scales. Each subject was also asked to group these pictures into as many classes as desired. We applied the techniques of hierarchical cluster analysis and non-parametric multidimensional scaling (MDS) to the pooled similarity matrix generated from the subjects' groupings. We used Classification and Regression Tree Analysis (CART), discriminant analysis, and principal component analysis on the data from the scale ratings. The clusters generated from hierarchical cluster analysis remained intact in the MDS plots. We found that the MDS solutions fit the data well. The stress in the three-dimensional case is 0.12. The CART and discriminant analyses provided further justification for our interpretation. The three orthogonal dimensions we identified for texture are repetitive
vs non-repetitive; high-contrast and non-directional
vs low-contrast and directional; granular, coarse and low-complexity
vs non-granular, fine and high-complexity. |
doi_str_mv | 10.1016/0042-6989(95)00202-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78228948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0042698995002022</els_id><sourcerecordid>78228948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-afd49afbf9b47be136b24f8e8a821cc00657284e8af05339d587adb869b4413f3</originalsourceid><addsrcrecordid>eNp9kMFO3DAURS1EBcOUPwApC1S1i4Dt2I7dRaVqROkIJDZ0bTn2c-UqccBOhs7fN2GGWXb15PfOvbIOQhcEXxNMxA3GjJZCSfVZ8S8YU0xLeoQWRNay5IKJY7Q4IKfoLOc_GOOaU3WCTmTNFRNige6f-leTXC5MMcDfYUxQRNOF-LvI2zxA97VYO4hD8Nt5l6CFjYlD4UIHMYc-5qL378mP6IM3bYbz_VyiXz9un1Y_y4fHu_Xq-0NpmZJDabxjyvjGq4bVDZBKNJR5CdJISqzFWPCaSja9PeZVpRyXtXGNFBPPSOWrJfq0631O_csIedBdyBba1kTox6xrSalUTE4g24E29Tkn8Po5hc6krSZYzw71LEjPgrTi-s2hplPsct8_Nh24Q2gvbbpf7e8mW9P6ZKIN-YBVhNSczzXfdhhMLjYBks42QLTgQgI7aNeH___jH1wvjc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78228948</pqid></control><display><type>article</type><title>Towards a texture naming system: Identifying relevant dimensions of texture</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ravishankar Rao, A. ; Lohse, Gerald L.</creator><creatorcontrib>Ravishankar Rao, A. ; Lohse, Gerald L.</creatorcontrib><description>Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is what textural features are important in texture perception, and how they are used. We designed an experiment to help identifiy the relevant higher order features of texture perceived by humans. We used twenty subjects, who were asked to rate 56 pictures from Brodatz's album on 12 nine-point Likert scales. Each subject was also asked to group these pictures into as many classes as desired. We applied the techniques of hierarchical cluster analysis and non-parametric multidimensional scaling (MDS) to the pooled similarity matrix generated from the subjects' groupings. We used Classification and Regression Tree Analysis (CART), discriminant analysis, and principal component analysis on the data from the scale ratings. The clusters generated from hierarchical cluster analysis remained intact in the MDS plots. We found that the MDS solutions fit the data well. The stress in the three-dimensional case is 0.12. The CART and discriminant analyses provided further justification for our interpretation. The three orthogonal dimensions we identified for texture are repetitive
vs non-repetitive; high-contrast and non-directional
vs low-contrast and directional; granular, coarse and low-complexity
vs non-granular, fine and high-complexity.</description><identifier>ISSN: 0042-6989</identifier><identifier>EISSN: 1878-5646</identifier><identifier>DOI: 10.1016/0042-6989(95)00202-2</identifier><identifier>PMID: 8759466</identifier><identifier>CODEN: VISRAM</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adult ; Biological and medical sciences ; Classification ; Cluster Analysis ; Contrast Sensitivity ; Directionality ; Discriminant Analysis ; Feature extraction ; Form Perception - classification ; Fundamental and applied biological sciences. Psychology ; Human texture perception ; Humans ; Image databases ; Perception ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Randomness ; Terminology as Topic ; Vision ; Visualization Repetition</subject><ispartof>Vision research (Oxford), 1996-06, Vol.36 (11), p.1649-1669</ispartof><rights>1996 Elsevier Science Ltd</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-afd49afbf9b47be136b24f8e8a821cc00657284e8af05339d587adb869b4413f3</citedby><cites>FETCH-LOGICAL-c498t-afd49afbf9b47be136b24f8e8a821cc00657284e8af05339d587adb869b4413f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0042-6989(95)00202-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3117552$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8759466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravishankar Rao, A.</creatorcontrib><creatorcontrib>Lohse, Gerald L.</creatorcontrib><title>Towards a texture naming system: Identifying relevant dimensions of texture</title><title>Vision research (Oxford)</title><addtitle>Vision Res</addtitle><description>Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is what textural features are important in texture perception, and how they are used. We designed an experiment to help identifiy the relevant higher order features of texture perceived by humans. We used twenty subjects, who were asked to rate 56 pictures from Brodatz's album on 12 nine-point Likert scales. Each subject was also asked to group these pictures into as many classes as desired. We applied the techniques of hierarchical cluster analysis and non-parametric multidimensional scaling (MDS) to the pooled similarity matrix generated from the subjects' groupings. We used Classification and Regression Tree Analysis (CART), discriminant analysis, and principal component analysis on the data from the scale ratings. The clusters generated from hierarchical cluster analysis remained intact in the MDS plots. We found that the MDS solutions fit the data well. The stress in the three-dimensional case is 0.12. The CART and discriminant analyses provided further justification for our interpretation. The three orthogonal dimensions we identified for texture are repetitive
vs non-repetitive; high-contrast and non-directional
vs low-contrast and directional; granular, coarse and low-complexity
vs non-granular, fine and high-complexity.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Contrast Sensitivity</subject><subject>Directionality</subject><subject>Discriminant Analysis</subject><subject>Feature extraction</subject><subject>Form Perception - classification</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human texture perception</subject><subject>Humans</subject><subject>Image databases</subject><subject>Perception</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Randomness</subject><subject>Terminology as Topic</subject><subject>Vision</subject><subject>Visualization Repetition</subject><issn>0042-6989</issn><issn>1878-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO3DAURS1EBcOUPwApC1S1i4Dt2I7dRaVqROkIJDZ0bTn2c-UqccBOhs7fN2GGWXb15PfOvbIOQhcEXxNMxA3GjJZCSfVZ8S8YU0xLeoQWRNay5IKJY7Q4IKfoLOc_GOOaU3WCTmTNFRNige6f-leTXC5MMcDfYUxQRNOF-LvI2zxA97VYO4hD8Nt5l6CFjYlD4UIHMYc-5qL378mP6IM3bYbz_VyiXz9un1Y_y4fHu_Xq-0NpmZJDabxjyvjGq4bVDZBKNJR5CdJISqzFWPCaSja9PeZVpRyXtXGNFBPPSOWrJfq0631O_csIedBdyBba1kTox6xrSalUTE4g24E29Tkn8Po5hc6krSZYzw71LEjPgrTi-s2hplPsct8_Nh24Q2gvbbpf7e8mW9P6ZKIN-YBVhNSczzXfdhhMLjYBks42QLTgQgI7aNeH___jH1wvjc4</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Ravishankar Rao, A.</creator><creator>Lohse, Gerald L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960601</creationdate><title>Towards a texture naming system: Identifying relevant dimensions of texture</title><author>Ravishankar Rao, A. ; Lohse, Gerald L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-afd49afbf9b47be136b24f8e8a821cc00657284e8af05339d587adb869b4413f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Contrast Sensitivity</topic><topic>Directionality</topic><topic>Discriminant Analysis</topic><topic>Feature extraction</topic><topic>Form Perception - classification</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human texture perception</topic><topic>Humans</topic><topic>Image databases</topic><topic>Perception</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Randomness</topic><topic>Terminology as Topic</topic><topic>Vision</topic><topic>Visualization Repetition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravishankar Rao, A.</creatorcontrib><creatorcontrib>Lohse, Gerald L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Vision research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravishankar Rao, A.</au><au>Lohse, Gerald L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a texture naming system: Identifying relevant dimensions of texture</atitle><jtitle>Vision research (Oxford)</jtitle><addtitle>Vision Res</addtitle><date>1996-06-01</date><risdate>1996</risdate><volume>36</volume><issue>11</issue><spage>1649</spage><epage>1669</epage><pages>1649-1669</pages><issn>0042-6989</issn><eissn>1878-5646</eissn><coden>VISRAM</coden><abstract>Recently, researchers have started using texture for data visualization. The rationale behind this is to exploit the sensitivity of the human visual system to texture in order to overcome the limitations inherent in the display of multidimensional data. A fundamental issue that must be addressed is what textural features are important in texture perception, and how they are used. We designed an experiment to help identifiy the relevant higher order features of texture perceived by humans. We used twenty subjects, who were asked to rate 56 pictures from Brodatz's album on 12 nine-point Likert scales. Each subject was also asked to group these pictures into as many classes as desired. We applied the techniques of hierarchical cluster analysis and non-parametric multidimensional scaling (MDS) to the pooled similarity matrix generated from the subjects' groupings. We used Classification and Regression Tree Analysis (CART), discriminant analysis, and principal component analysis on the data from the scale ratings. The clusters generated from hierarchical cluster analysis remained intact in the MDS plots. We found that the MDS solutions fit the data well. The stress in the three-dimensional case is 0.12. The CART and discriminant analyses provided further justification for our interpretation. The three orthogonal dimensions we identified for texture are repetitive
vs non-repetitive; high-contrast and non-directional
vs low-contrast and directional; granular, coarse and low-complexity
vs non-granular, fine and high-complexity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>8759466</pmid><doi>10.1016/0042-6989(95)00202-2</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0042-6989 |
ispartof | Vision research (Oxford), 1996-06, Vol.36 (11), p.1649-1669 |
issn | 0042-6989 1878-5646 |
language | eng |
recordid | cdi_proquest_miscellaneous_78228948 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Adult Biological and medical sciences Classification Cluster Analysis Contrast Sensitivity Directionality Discriminant Analysis Feature extraction Form Perception - classification Fundamental and applied biological sciences. Psychology Human texture perception Humans Image databases Perception Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Randomness Terminology as Topic Vision Visualization Repetition |
title | Towards a texture naming system: Identifying relevant dimensions of texture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20texture%20naming%20system:%20Identifying%20relevant%20dimensions%20of%20texture&rft.jtitle=Vision%20research%20(Oxford)&rft.au=Ravishankar%20Rao,%20A.&rft.date=1996-06-01&rft.volume=36&rft.issue=11&rft.spage=1649&rft.epage=1669&rft.pages=1649-1669&rft.issn=0042-6989&rft.eissn=1878-5646&rft.coden=VISRAM&rft_id=info:doi/10.1016/0042-6989(95)00202-2&rft_dat=%3Cproquest_cross%3E78228948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78228948&rft_id=info:pmid/8759466&rft_els_id=0042698995002022&rfr_iscdi=true |