Sequence analysis of end-labeled DNA fragments by solvolysis in hot aqueous piperidine solutions

One-lane DNA sequencing by solvolysis in hot aqueous piperidine solutions, originally described for 5′- 32P-labeled DNA (B. Ambrose and R. Pless (1985) Biochemistry 24, 6194–6200) , is extended to 3′-labeled fragments. A salt-free sample for electrophoresis can be obtained by using 1 m LiCl in the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical biochemistry 1988-02, Vol.169 (1), p.151-158
Hauptverfasser: Ambrose, Barbara J.B., Pless, Reynaldo C., Ayers, Mary E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 1
container_start_page 151
container_title Analytical biochemistry
container_volume 169
creator Ambrose, Barbara J.B.
Pless, Reynaldo C.
Ayers, Mary E.
description One-lane DNA sequencing by solvolysis in hot aqueous piperidine solutions, originally described for 5′- 32P-labeled DNA (B. Ambrose and R. Pless (1985) Biochemistry 24, 6194–6200) , is extended to 3′-labeled fragments. A salt-free sample for electrophoresis can be obtained by using 1 m LiCl in the solvolysis mixture and removing this salt from the dried hydrolysate by washing with ethanol. Rate and distribution of DNA cleavage in hot aqueous piperidine, containing 0.3 m NaCl, are studied in dependence of temperature, solvent, amine concentration, and reaction time. An increase in temperature strongly accelerates overall DNA degradation, but leaves the distribution of cleavage essentially unchanged. When 50% aqueous ethanol is substituted for water as the reaction solvent, the overall cleavage is slower, and scission at G-sites is enhanced relative to cleavage at the other bases. A rise in the piperidine concentration strongly accelerates the reaction, except at very high amine concentration. Cleavage at A-, G-, and C-sites increases steadily with reaction time, while the T-cleavage observed takes place primarily at the very beginning of the solvolysis.
doi_str_mv 10.1016/0003-2697(88)90266-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78223736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0003269788902667</els_id><sourcerecordid>14832308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-7ab7a9eb7caa86dd0941cf9e4d22b5a40b4c4e5a397f6c2302b26c64c8bfca033</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMoYzv6DxSyENFFaV6Vx0YYxicMulDXMY9bGqlO2qR6oP-9Kbvppa7u4n7ncDgHoceUvKSEyleEED4wadRzrV8YwqQc1B20ocTIgXBi7qLNGbmPHrT2ixBKxSgv0AXTfDRUbtD3L_B7DzkAdtnNh5YaLhOGHIfZeZgh4jefrvBU3Y8t5KVhf8CtzLfliKaMf5YFu25R9g3v0g5qiinDCu2XVHJ7iO5Nbm7w6HQv0bd3b79efxhuPr__eH11MwRB1TIo55Uz4FVwTssYiRE0TAZEZMyPThAvgoDRcaMmGRgnzDMZpAjaT8ERzi_Rs6PvrpYepy12m1qAeXZ5zWaVZowrLv8LUqF599cdFEcw1NJahcnuatq6erCU2HUBu9Zr13qt1vbvAlZ12ZOT_95vIZ5Fp8r7_-np71pwc682h9TOmKKECT127PURg17abYJqW0jrUDFVCIuNJf07xx8ACqMj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14832308</pqid></control><display><type>article</type><title>Sequence analysis of end-labeled DNA fragments by solvolysis in hot aqueous piperidine solutions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ambrose, Barbara J.B. ; Pless, Reynaldo C. ; Ayers, Mary E.</creator><creatorcontrib>Ambrose, Barbara J.B. ; Pless, Reynaldo C. ; Ayers, Mary E.</creatorcontrib><description>One-lane DNA sequencing by solvolysis in hot aqueous piperidine solutions, originally described for 5′- 32P-labeled DNA (B. Ambrose and R. Pless (1985) Biochemistry 24, 6194–6200) , is extended to 3′-labeled fragments. A salt-free sample for electrophoresis can be obtained by using 1 m LiCl in the solvolysis mixture and removing this salt from the dried hydrolysate by washing with ethanol. Rate and distribution of DNA cleavage in hot aqueous piperidine, containing 0.3 m NaCl, are studied in dependence of temperature, solvent, amine concentration, and reaction time. An increase in temperature strongly accelerates overall DNA degradation, but leaves the distribution of cleavage essentially unchanged. When 50% aqueous ethanol is substituted for water as the reaction solvent, the overall cleavage is slower, and scission at G-sites is enhanced relative to cleavage at the other bases. A rise in the piperidine concentration strongly accelerates the reaction, except at very high amine concentration. Cleavage at A-, G-, and C-sites increases steadily with reaction time, while the T-cleavage observed takes place primarily at the very beginning of the solvolysis.</description><identifier>ISSN: 0003-2697</identifier><identifier>EISSN: 1096-0309</identifier><identifier>DOI: 10.1016/0003-2697(88)90266-7</identifier><identifier>PMID: 2835916</identifier><identifier>CODEN: ANBCA2</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Analytical, structural and metabolic biochemistry ; Autoradiography ; Base Sequence ; Biological and medical sciences ; Chlorides ; DNA ; DNA - analysis ; DNA sequencing ; Dna, deoxyribonucleoproteins ; Fundamental and applied biological sciences. Psychology ; gel electrophoresis ; Hot Temperature ; Hydrolysis ; Lithium ; Lithium Chloride ; nucleic acid chemistry ; Nucleic acids ; nucleotide sequence ; piperidine ; Piperidines ; Sodium Chloride</subject><ispartof>Analytical biochemistry, 1988-02, Vol.169 (1), p.151-158</ispartof><rights>1988</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-7ab7a9eb7caa86dd0941cf9e4d22b5a40b4c4e5a397f6c2302b26c64c8bfca033</citedby><cites>FETCH-LOGICAL-c417t-7ab7a9eb7caa86dd0941cf9e4d22b5a40b4c4e5a397f6c2302b26c64c8bfca033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0003269788902667$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7102485$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2835916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ambrose, Barbara J.B.</creatorcontrib><creatorcontrib>Pless, Reynaldo C.</creatorcontrib><creatorcontrib>Ayers, Mary E.</creatorcontrib><title>Sequence analysis of end-labeled DNA fragments by solvolysis in hot aqueous piperidine solutions</title><title>Analytical biochemistry</title><addtitle>Anal Biochem</addtitle><description>One-lane DNA sequencing by solvolysis in hot aqueous piperidine solutions, originally described for 5′- 32P-labeled DNA (B. Ambrose and R. Pless (1985) Biochemistry 24, 6194–6200) , is extended to 3′-labeled fragments. A salt-free sample for electrophoresis can be obtained by using 1 m LiCl in the solvolysis mixture and removing this salt from the dried hydrolysate by washing with ethanol. Rate and distribution of DNA cleavage in hot aqueous piperidine, containing 0.3 m NaCl, are studied in dependence of temperature, solvent, amine concentration, and reaction time. An increase in temperature strongly accelerates overall DNA degradation, but leaves the distribution of cleavage essentially unchanged. When 50% aqueous ethanol is substituted for water as the reaction solvent, the overall cleavage is slower, and scission at G-sites is enhanced relative to cleavage at the other bases. A rise in the piperidine concentration strongly accelerates the reaction, except at very high amine concentration. Cleavage at A-, G-, and C-sites increases steadily with reaction time, while the T-cleavage observed takes place primarily at the very beginning of the solvolysis.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Autoradiography</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Chlorides</subject><subject>DNA</subject><subject>DNA - analysis</subject><subject>DNA sequencing</subject><subject>Dna, deoxyribonucleoproteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gel electrophoresis</subject><subject>Hot Temperature</subject><subject>Hydrolysis</subject><subject>Lithium</subject><subject>Lithium Chloride</subject><subject>nucleic acid chemistry</subject><subject>Nucleic acids</subject><subject>nucleotide sequence</subject><subject>piperidine</subject><subject>Piperidines</subject><subject>Sodium Chloride</subject><issn>0003-2697</issn><issn>1096-0309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUuLFDEUhYMoYzv6DxSyENFFaV6Vx0YYxicMulDXMY9bGqlO2qR6oP-9Kbvppa7u4n7ncDgHoceUvKSEyleEED4wadRzrV8YwqQc1B20ocTIgXBi7qLNGbmPHrT2ixBKxSgv0AXTfDRUbtD3L_B7DzkAdtnNh5YaLhOGHIfZeZgh4jefrvBU3Y8t5KVhf8CtzLfliKaMf5YFu25R9g3v0g5qiinDCu2XVHJ7iO5Nbm7w6HQv0bd3b79efxhuPr__eH11MwRB1TIo55Uz4FVwTssYiRE0TAZEZMyPThAvgoDRcaMmGRgnzDMZpAjaT8ERzi_Rs6PvrpYepy12m1qAeXZ5zWaVZowrLv8LUqF599cdFEcw1NJahcnuatq6erCU2HUBu9Zr13qt1vbvAlZ12ZOT_95vIZ5Fp8r7_-np71pwc682h9TOmKKECT127PURg17abYJqW0jrUDFVCIuNJf07xx8ACqMj</recordid><startdate>19880215</startdate><enddate>19880215</enddate><creator>Ambrose, Barbara J.B.</creator><creator>Pless, Reynaldo C.</creator><creator>Ayers, Mary E.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19880215</creationdate><title>Sequence analysis of end-labeled DNA fragments by solvolysis in hot aqueous piperidine solutions</title><author>Ambrose, Barbara J.B. ; Pless, Reynaldo C. ; Ayers, Mary E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-7ab7a9eb7caa86dd0941cf9e4d22b5a40b4c4e5a397f6c2302b26c64c8bfca033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Autoradiography</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Chlorides</topic><topic>DNA</topic><topic>DNA - analysis</topic><topic>DNA sequencing</topic><topic>Dna, deoxyribonucleoproteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gel electrophoresis</topic><topic>Hot Temperature</topic><topic>Hydrolysis</topic><topic>Lithium</topic><topic>Lithium Chloride</topic><topic>nucleic acid chemistry</topic><topic>Nucleic acids</topic><topic>nucleotide sequence</topic><topic>piperidine</topic><topic>Piperidines</topic><topic>Sodium Chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambrose, Barbara J.B.</creatorcontrib><creatorcontrib>Pless, Reynaldo C.</creatorcontrib><creatorcontrib>Ayers, Mary E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambrose, Barbara J.B.</au><au>Pless, Reynaldo C.</au><au>Ayers, Mary E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence analysis of end-labeled DNA fragments by solvolysis in hot aqueous piperidine solutions</atitle><jtitle>Analytical biochemistry</jtitle><addtitle>Anal Biochem</addtitle><date>1988-02-15</date><risdate>1988</risdate><volume>169</volume><issue>1</issue><spage>151</spage><epage>158</epage><pages>151-158</pages><issn>0003-2697</issn><eissn>1096-0309</eissn><coden>ANBCA2</coden><abstract>One-lane DNA sequencing by solvolysis in hot aqueous piperidine solutions, originally described for 5′- 32P-labeled DNA (B. Ambrose and R. Pless (1985) Biochemistry 24, 6194–6200) , is extended to 3′-labeled fragments. A salt-free sample for electrophoresis can be obtained by using 1 m LiCl in the solvolysis mixture and removing this salt from the dried hydrolysate by washing with ethanol. Rate and distribution of DNA cleavage in hot aqueous piperidine, containing 0.3 m NaCl, are studied in dependence of temperature, solvent, amine concentration, and reaction time. An increase in temperature strongly accelerates overall DNA degradation, but leaves the distribution of cleavage essentially unchanged. When 50% aqueous ethanol is substituted for water as the reaction solvent, the overall cleavage is slower, and scission at G-sites is enhanced relative to cleavage at the other bases. A rise in the piperidine concentration strongly accelerates the reaction, except at very high amine concentration. Cleavage at A-, G-, and C-sites increases steadily with reaction time, while the T-cleavage observed takes place primarily at the very beginning of the solvolysis.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>2835916</pmid><doi>10.1016/0003-2697(88)90266-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2697
ispartof Analytical biochemistry, 1988-02, Vol.169 (1), p.151-158
issn 0003-2697
1096-0309
language eng
recordid cdi_proquest_miscellaneous_78223736
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Analytical, structural and metabolic biochemistry
Autoradiography
Base Sequence
Biological and medical sciences
Chlorides
DNA
DNA - analysis
DNA sequencing
Dna, deoxyribonucleoproteins
Fundamental and applied biological sciences. Psychology
gel electrophoresis
Hot Temperature
Hydrolysis
Lithium
Lithium Chloride
nucleic acid chemistry
Nucleic acids
nucleotide sequence
piperidine
Piperidines
Sodium Chloride
title Sequence analysis of end-labeled DNA fragments by solvolysis in hot aqueous piperidine solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence%20analysis%20of%20end-labeled%20DNA%20fragments%20by%20solvolysis%20in%20hot%20aqueous%20piperidine%20solutions&rft.jtitle=Analytical%20biochemistry&rft.au=Ambrose,%20Barbara%20J.B.&rft.date=1988-02-15&rft.volume=169&rft.issue=1&rft.spage=151&rft.epage=158&rft.pages=151-158&rft.issn=0003-2697&rft.eissn=1096-0309&rft.coden=ANBCA2&rft_id=info:doi/10.1016/0003-2697(88)90266-7&rft_dat=%3Cproquest_cross%3E14832308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14832308&rft_id=info:pmid/2835916&rft_els_id=0003269788902667&rfr_iscdi=true