Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase: Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate
The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates du...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1996-08, Vol.35 (31), p.10240-10247 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10247 |
---|---|
container_issue | 31 |
container_start_page | 10240 |
container_title | Biochemistry (Easton) |
container_volume | 35 |
creator | Nesheim, Jeremy C Lipscomb, John D |
description | The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates during the turnover [Lee, S.-K., Nesheim, J. C., & Lipscomb, J. D. (1993) J. Biol. Chem. 268, 21569−21577; Liu, Y., Nesheim, J. C., Lee, S.-K., & Lipscomb, J. D. (1995) J. Biol. Chem. 270, 24662−24665]. One intermediate, termed compound Q, reacts with CH4 to yield enzyme-bound product. It is shown here that the deuterium kinetic isotope effect (KIE) for the reaction of compound Q with CH4 is 50−100, which is one of the largest effects observed to date. The rate constants for the reactions of the deuterated homologs of methane decrease monotonically as the deuterium content increases, suggesting that a large primary isotope effect dominates. The KIEs determined by analyzing the products after a single turnover have the following values: 1:1 CH4:CD4 (19); CD3H (12); CD2H2 (9); and CH3D (4). The KIE values determined by directly observing the reactive intermediate and by monitoring product ratios are all large, consistent with complete C−H bond breaking in the oxygenation step of the reaction. However, the differences in the KIE values determined by these two methods suggest that the reaction is more complex than currently proposed. A modified mechanism introducing the possibility of hydrogen-atom reabstraction by an intermediate methyl radical is proposed. |
doi_str_mv | 10.1021/bi960596w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78209131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15655932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-dafea117998930130997adbced548f1968fd51b0f23aa37ff33e8a8391ffc3b93</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEKtvCgQdA8gUkDgE7jpOYW0m3dMWuWkHhak2ccXHJxkvsbTecOMKVK2_XJ8FoV3tC4mRZ36d_NPMnyRNGXzKasVeNlQUVsri9l0yYyGiaSynuJxNKaZFmkT1MDr2_jt-clvlBclCVosglnSS_5zBcIXlnewxWk5l3wa2QTI1BHTyxPVlg-Aw9kvONbSFY15MaAnTjN2xJM-7xwvXObcYr7MHj67vvP8n0xrbYayTGDaS--_HrjLxxfUvqDuEG4tAYDuQ9gt6mjrpDMusDDktsLQR8lDww0Hl8vHuPko-n08v6LJ2fv53Vx_MU8lyEtAWDwFgpZSU5ZZxKWULbaGxFXhkmi8q0gjXUZByAl8ZwjhVUXDJjNG8kP0qeb3NXg_u6Rh_U0nqNXRf3cmuvyiqjknH2X5GJQgjJsyi-2Ip6cN4PaNRqsEsYRsWo-tuY2jcW3ae70HUTF9-bu4oiT7fc-oCbPYbhiypKXgp1efFBnSw-nZxSWamL6D_b-qC9unbroY-3-8fcP2UIrzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15655932</pqid></control><display><type>article</type><title>Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase: Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate</title><source>MEDLINE</source><source>ACS Publications</source><creator>Nesheim, Jeremy C ; Lipscomb, John D</creator><creatorcontrib>Nesheim, Jeremy C ; Lipscomb, John D</creatorcontrib><description>The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates during the turnover [Lee, S.-K., Nesheim, J. C., & Lipscomb, J. D. (1993) J. Biol. Chem. 268, 21569−21577; Liu, Y., Nesheim, J. C., Lee, S.-K., & Lipscomb, J. D. (1995) J. Biol. Chem. 270, 24662−24665]. One intermediate, termed compound Q, reacts with CH4 to yield enzyme-bound product. It is shown here that the deuterium kinetic isotope effect (KIE) for the reaction of compound Q with CH4 is 50−100, which is one of the largest effects observed to date. The rate constants for the reactions of the deuterated homologs of methane decrease monotonically as the deuterium content increases, suggesting that a large primary isotope effect dominates. The KIEs determined by analyzing the products after a single turnover have the following values: 1:1 CH4:CD4 (19); CD3H (12); CD2H2 (9); and CH3D (4). The KIE values determined by directly observing the reactive intermediate and by monitoring product ratios are all large, consistent with complete C−H bond breaking in the oxygenation step of the reaction. However, the differences in the KIE values determined by these two methods suggest that the reaction is more complex than currently proposed. A modified mechanism introducing the possibility of hydrogen-atom reabstraction by an intermediate methyl radical is proposed.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi960596w</identifier><identifier>PMID: 8756490</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer Simulation ; Deuterium ; Euryarchaeota - enzymology ; Isotope Labeling ; Kinetics ; Mass Spectrometry ; Methane - metabolism ; Methylosinus trichosporium ; Models, Chemical ; Oxidation-Reduction ; Oxygenases - chemistry ; Oxygenases - metabolism ; Regression Analysis ; Spectrophotometry ; Thermodynamics</subject><ispartof>Biochemistry (Easton), 1996-08, Vol.35 (31), p.10240-10247</ispartof><rights>Copyright © 1996 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-dafea117998930130997adbced548f1968fd51b0f23aa37ff33e8a8391ffc3b93</citedby><cites>FETCH-LOGICAL-a445t-dafea117998930130997adbced548f1968fd51b0f23aa37ff33e8a8391ffc3b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi960596w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi960596w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8756490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesheim, Jeremy C</creatorcontrib><creatorcontrib>Lipscomb, John D</creatorcontrib><title>Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase: Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates during the turnover [Lee, S.-K., Nesheim, J. C., & Lipscomb, J. D. (1993) J. Biol. Chem. 268, 21569−21577; Liu, Y., Nesheim, J. C., Lee, S.-K., & Lipscomb, J. D. (1995) J. Biol. Chem. 270, 24662−24665]. One intermediate, termed compound Q, reacts with CH4 to yield enzyme-bound product. It is shown here that the deuterium kinetic isotope effect (KIE) for the reaction of compound Q with CH4 is 50−100, which is one of the largest effects observed to date. The rate constants for the reactions of the deuterated homologs of methane decrease monotonically as the deuterium content increases, suggesting that a large primary isotope effect dominates. The KIEs determined by analyzing the products after a single turnover have the following values: 1:1 CH4:CD4 (19); CD3H (12); CD2H2 (9); and CH3D (4). The KIE values determined by directly observing the reactive intermediate and by monitoring product ratios are all large, consistent with complete C−H bond breaking in the oxygenation step of the reaction. However, the differences in the KIE values determined by these two methods suggest that the reaction is more complex than currently proposed. A modified mechanism introducing the possibility of hydrogen-atom reabstraction by an intermediate methyl radical is proposed.</description><subject>Computer Simulation</subject><subject>Deuterium</subject><subject>Euryarchaeota - enzymology</subject><subject>Isotope Labeling</subject><subject>Kinetics</subject><subject>Mass Spectrometry</subject><subject>Methane - metabolism</subject><subject>Methylosinus trichosporium</subject><subject>Models, Chemical</subject><subject>Oxidation-Reduction</subject><subject>Oxygenases - chemistry</subject><subject>Oxygenases - metabolism</subject><subject>Regression Analysis</subject><subject>Spectrophotometry</subject><subject>Thermodynamics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEKtvCgQdA8gUkDgE7jpOYW0m3dMWuWkHhak2ccXHJxkvsbTecOMKVK2_XJ8FoV3tC4mRZ36d_NPMnyRNGXzKasVeNlQUVsri9l0yYyGiaSynuJxNKaZFmkT1MDr2_jt-clvlBclCVosglnSS_5zBcIXlnewxWk5l3wa2QTI1BHTyxPVlg-Aw9kvONbSFY15MaAnTjN2xJM-7xwvXObcYr7MHj67vvP8n0xrbYayTGDaS--_HrjLxxfUvqDuEG4tAYDuQ9gt6mjrpDMusDDktsLQR8lDww0Hl8vHuPko-n08v6LJ2fv53Vx_MU8lyEtAWDwFgpZSU5ZZxKWULbaGxFXhkmi8q0gjXUZByAl8ZwjhVUXDJjNG8kP0qeb3NXg_u6Rh_U0nqNXRf3cmuvyiqjknH2X5GJQgjJsyi-2Ip6cN4PaNRqsEsYRsWo-tuY2jcW3ae70HUTF9-bu4oiT7fc-oCbPYbhiypKXgp1efFBnSw-nZxSWamL6D_b-qC9unbroY-3-8fcP2UIrzI</recordid><startdate>19960806</startdate><enddate>19960806</enddate><creator>Nesheim, Jeremy C</creator><creator>Lipscomb, John D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19960806</creationdate><title>Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase: Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate</title><author>Nesheim, Jeremy C ; Lipscomb, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-dafea117998930130997adbced548f1968fd51b0f23aa37ff33e8a8391ffc3b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Computer Simulation</topic><topic>Deuterium</topic><topic>Euryarchaeota - enzymology</topic><topic>Isotope Labeling</topic><topic>Kinetics</topic><topic>Mass Spectrometry</topic><topic>Methane - metabolism</topic><topic>Methylosinus trichosporium</topic><topic>Models, Chemical</topic><topic>Oxidation-Reduction</topic><topic>Oxygenases - chemistry</topic><topic>Oxygenases - metabolism</topic><topic>Regression Analysis</topic><topic>Spectrophotometry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesheim, Jeremy C</creatorcontrib><creatorcontrib>Lipscomb, John D</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesheim, Jeremy C</au><au>Lipscomb, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase: Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1996-08-06</date><risdate>1996</risdate><volume>35</volume><issue>31</issue><spage>10240</spage><epage>10247</epage><pages>10240-10247</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates during the turnover [Lee, S.-K., Nesheim, J. C., & Lipscomb, J. D. (1993) J. Biol. Chem. 268, 21569−21577; Liu, Y., Nesheim, J. C., Lee, S.-K., & Lipscomb, J. D. (1995) J. Biol. Chem. 270, 24662−24665]. One intermediate, termed compound Q, reacts with CH4 to yield enzyme-bound product. It is shown here that the deuterium kinetic isotope effect (KIE) for the reaction of compound Q with CH4 is 50−100, which is one of the largest effects observed to date. The rate constants for the reactions of the deuterated homologs of methane decrease monotonically as the deuterium content increases, suggesting that a large primary isotope effect dominates. The KIEs determined by analyzing the products after a single turnover have the following values: 1:1 CH4:CD4 (19); CD3H (12); CD2H2 (9); and CH3D (4). The KIE values determined by directly observing the reactive intermediate and by monitoring product ratios are all large, consistent with complete C−H bond breaking in the oxygenation step of the reaction. However, the differences in the KIE values determined by these two methods suggest that the reaction is more complex than currently proposed. A modified mechanism introducing the possibility of hydrogen-atom reabstraction by an intermediate methyl radical is proposed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>8756490</pmid><doi>10.1021/bi960596w</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 1996-08, Vol.35 (31), p.10240-10247 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_78209131 |
source | MEDLINE; ACS Publications |
subjects | Computer Simulation Deuterium Euryarchaeota - enzymology Isotope Labeling Kinetics Mass Spectrometry Methane - metabolism Methylosinus trichosporium Models, Chemical Oxidation-Reduction Oxygenases - chemistry Oxygenases - metabolism Regression Analysis Spectrophotometry Thermodynamics |
title | Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase: Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Kinetic%20Isotope%20Effects%20in%20Methane%20Oxidation%20Catalyzed%20by%20Methane%20Monooxygenase:%E2%80%89%20Evidence%20for%20C%E2%88%92H%20Bond%20Cleavage%20in%20a%20Reaction%20Cycle%20Intermediate&rft.jtitle=Biochemistry%20(Easton)&rft.au=Nesheim,%20Jeremy%20C&rft.date=1996-08-06&rft.volume=35&rft.issue=31&rft.spage=10240&rft.epage=10247&rft.pages=10240-10247&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi960596w&rft_dat=%3Cproquest_cross%3E15655932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15655932&rft_id=info:pmid/8756490&rfr_iscdi=true |