Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase:  Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate

The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1996-08, Vol.35 (31), p.10240-10247
Hauptverfasser: Nesheim, Jeremy C, Lipscomb, John D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10247
container_issue 31
container_start_page 10240
container_title Biochemistry (Easton)
container_volume 35
creator Nesheim, Jeremy C
Lipscomb, John D
description The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates during the turnover [Lee, S.-K., Nesheim, J. C., & Lipscomb, J. D. (1993) J. Biol. Chem. 268, 21569−21577; Liu, Y., Nesheim, J. C., Lee, S.-K., & Lipscomb, J. D. (1995) J. Biol. Chem. 270, 24662−24665]. One intermediate, termed compound Q, reacts with CH4 to yield enzyme-bound product. It is shown here that the deuterium kinetic isotope effect (KIE) for the reaction of compound Q with CH4 is 50−100, which is one of the largest effects observed to date. The rate constants for the reactions of the deuterated homologs of methane decrease monotonically as the deuterium content increases, suggesting that a large primary isotope effect dominates. The KIEs determined by analyzing the products after a single turnover have the following values:  1:1 CH4:CD4 (19); CD3H (12); CD2H2 (9); and CH3D (4). The KIE values determined by directly observing the reactive intermediate and by monitoring product ratios are all large, consistent with complete C−H bond breaking in the oxygenation step of the reaction. However, the differences in the KIE values determined by these two methods suggest that the reaction is more complex than currently proposed. A modified mechanism introducing the possibility of hydrogen-atom reabstraction by an intermediate methyl radical is proposed.
doi_str_mv 10.1021/bi960596w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78209131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15655932</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-dafea117998930130997adbced548f1968fd51b0f23aa37ff33e8a8391ffc3b93</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEKtvCgQdA8gUkDgE7jpOYW0m3dMWuWkHhak2ccXHJxkvsbTecOMKVK2_XJ8FoV3tC4mRZ36d_NPMnyRNGXzKasVeNlQUVsri9l0yYyGiaSynuJxNKaZFmkT1MDr2_jt-clvlBclCVosglnSS_5zBcIXlnewxWk5l3wa2QTI1BHTyxPVlg-Aw9kvONbSFY15MaAnTjN2xJM-7xwvXObcYr7MHj67vvP8n0xrbYayTGDaS--_HrjLxxfUvqDuEG4tAYDuQ9gt6mjrpDMusDDktsLQR8lDww0Hl8vHuPko-n08v6LJ2fv53Vx_MU8lyEtAWDwFgpZSU5ZZxKWULbaGxFXhkmi8q0gjXUZByAl8ZwjhVUXDJjNG8kP0qeb3NXg_u6Rh_U0nqNXRf3cmuvyiqjknH2X5GJQgjJsyi-2Ip6cN4PaNRqsEsYRsWo-tuY2jcW3ae70HUTF9-bu4oiT7fc-oCbPYbhiypKXgp1efFBnSw-nZxSWamL6D_b-qC9unbroY-3-8fcP2UIrzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15655932</pqid></control><display><type>article</type><title>Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase:  Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate</title><source>MEDLINE</source><source>ACS Publications</source><creator>Nesheim, Jeremy C ; Lipscomb, John D</creator><creatorcontrib>Nesheim, Jeremy C ; Lipscomb, John D</creatorcontrib><description>The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates during the turnover [Lee, S.-K., Nesheim, J. C., &amp; Lipscomb, J. D. (1993) J. Biol. Chem. 268, 21569−21577; Liu, Y., Nesheim, J. C., Lee, S.-K., &amp; Lipscomb, J. D. (1995) J. Biol. Chem. 270, 24662−24665]. One intermediate, termed compound Q, reacts with CH4 to yield enzyme-bound product. It is shown here that the deuterium kinetic isotope effect (KIE) for the reaction of compound Q with CH4 is 50−100, which is one of the largest effects observed to date. The rate constants for the reactions of the deuterated homologs of methane decrease monotonically as the deuterium content increases, suggesting that a large primary isotope effect dominates. The KIEs determined by analyzing the products after a single turnover have the following values:  1:1 CH4:CD4 (19); CD3H (12); CD2H2 (9); and CH3D (4). The KIE values determined by directly observing the reactive intermediate and by monitoring product ratios are all large, consistent with complete C−H bond breaking in the oxygenation step of the reaction. However, the differences in the KIE values determined by these two methods suggest that the reaction is more complex than currently proposed. A modified mechanism introducing the possibility of hydrogen-atom reabstraction by an intermediate methyl radical is proposed.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi960596w</identifier><identifier>PMID: 8756490</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer Simulation ; Deuterium ; Euryarchaeota - enzymology ; Isotope Labeling ; Kinetics ; Mass Spectrometry ; Methane - metabolism ; Methylosinus trichosporium ; Models, Chemical ; Oxidation-Reduction ; Oxygenases - chemistry ; Oxygenases - metabolism ; Regression Analysis ; Spectrophotometry ; Thermodynamics</subject><ispartof>Biochemistry (Easton), 1996-08, Vol.35 (31), p.10240-10247</ispartof><rights>Copyright © 1996 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-dafea117998930130997adbced548f1968fd51b0f23aa37ff33e8a8391ffc3b93</citedby><cites>FETCH-LOGICAL-a445t-dafea117998930130997adbced548f1968fd51b0f23aa37ff33e8a8391ffc3b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi960596w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi960596w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8756490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesheim, Jeremy C</creatorcontrib><creatorcontrib>Lipscomb, John D</creatorcontrib><title>Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase:  Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates during the turnover [Lee, S.-K., Nesheim, J. C., &amp; Lipscomb, J. D. (1993) J. Biol. Chem. 268, 21569−21577; Liu, Y., Nesheim, J. C., Lee, S.-K., &amp; Lipscomb, J. D. (1995) J. Biol. Chem. 270, 24662−24665]. One intermediate, termed compound Q, reacts with CH4 to yield enzyme-bound product. It is shown here that the deuterium kinetic isotope effect (KIE) for the reaction of compound Q with CH4 is 50−100, which is one of the largest effects observed to date. The rate constants for the reactions of the deuterated homologs of methane decrease monotonically as the deuterium content increases, suggesting that a large primary isotope effect dominates. The KIEs determined by analyzing the products after a single turnover have the following values:  1:1 CH4:CD4 (19); CD3H (12); CD2H2 (9); and CH3D (4). The KIE values determined by directly observing the reactive intermediate and by monitoring product ratios are all large, consistent with complete C−H bond breaking in the oxygenation step of the reaction. However, the differences in the KIE values determined by these two methods suggest that the reaction is more complex than currently proposed. A modified mechanism introducing the possibility of hydrogen-atom reabstraction by an intermediate methyl radical is proposed.</description><subject>Computer Simulation</subject><subject>Deuterium</subject><subject>Euryarchaeota - enzymology</subject><subject>Isotope Labeling</subject><subject>Kinetics</subject><subject>Mass Spectrometry</subject><subject>Methane - metabolism</subject><subject>Methylosinus trichosporium</subject><subject>Models, Chemical</subject><subject>Oxidation-Reduction</subject><subject>Oxygenases - chemistry</subject><subject>Oxygenases - metabolism</subject><subject>Regression Analysis</subject><subject>Spectrophotometry</subject><subject>Thermodynamics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAQhiMEKtvCgQdA8gUkDgE7jpOYW0m3dMWuWkHhak2ccXHJxkvsbTecOMKVK2_XJ8FoV3tC4mRZ36d_NPMnyRNGXzKasVeNlQUVsri9l0yYyGiaSynuJxNKaZFmkT1MDr2_jt-clvlBclCVosglnSS_5zBcIXlnewxWk5l3wa2QTI1BHTyxPVlg-Aw9kvONbSFY15MaAnTjN2xJM-7xwvXObcYr7MHj67vvP8n0xrbYayTGDaS--_HrjLxxfUvqDuEG4tAYDuQ9gt6mjrpDMusDDktsLQR8lDww0Hl8vHuPko-n08v6LJ2fv53Vx_MU8lyEtAWDwFgpZSU5ZZxKWULbaGxFXhkmi8q0gjXUZByAl8ZwjhVUXDJjNG8kP0qeb3NXg_u6Rh_U0nqNXRf3cmuvyiqjknH2X5GJQgjJsyi-2Ip6cN4PaNRqsEsYRsWo-tuY2jcW3ae70HUTF9-bu4oiT7fc-oCbPYbhiypKXgp1efFBnSw-nZxSWamL6D_b-qC9unbroY-3-8fcP2UIrzI</recordid><startdate>19960806</startdate><enddate>19960806</enddate><creator>Nesheim, Jeremy C</creator><creator>Lipscomb, John D</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19960806</creationdate><title>Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase:  Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate</title><author>Nesheim, Jeremy C ; Lipscomb, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-dafea117998930130997adbced548f1968fd51b0f23aa37ff33e8a8391ffc3b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Computer Simulation</topic><topic>Deuterium</topic><topic>Euryarchaeota - enzymology</topic><topic>Isotope Labeling</topic><topic>Kinetics</topic><topic>Mass Spectrometry</topic><topic>Methane - metabolism</topic><topic>Methylosinus trichosporium</topic><topic>Models, Chemical</topic><topic>Oxidation-Reduction</topic><topic>Oxygenases - chemistry</topic><topic>Oxygenases - metabolism</topic><topic>Regression Analysis</topic><topic>Spectrophotometry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesheim, Jeremy C</creatorcontrib><creatorcontrib>Lipscomb, John D</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesheim, Jeremy C</au><au>Lipscomb, John D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase:  Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1996-08-06</date><risdate>1996</risdate><volume>35</volume><issue>31</issue><spage>10240</spage><epage>10247</epage><pages>10240-10247</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The reduced hydroxylase component (MMOH) of soluble methane monooxygenase (MMO) from Methylosinus trichosporium OB3b reacts with O2 and CH4 to produce CH3OH and H2O in a single-turnover reaction. Transient kinetic analysis of this reaction has revealed at least five and probably six intermediates during the turnover [Lee, S.-K., Nesheim, J. C., &amp; Lipscomb, J. D. (1993) J. Biol. Chem. 268, 21569−21577; Liu, Y., Nesheim, J. C., Lee, S.-K., &amp; Lipscomb, J. D. (1995) J. Biol. Chem. 270, 24662−24665]. One intermediate, termed compound Q, reacts with CH4 to yield enzyme-bound product. It is shown here that the deuterium kinetic isotope effect (KIE) for the reaction of compound Q with CH4 is 50−100, which is one of the largest effects observed to date. The rate constants for the reactions of the deuterated homologs of methane decrease monotonically as the deuterium content increases, suggesting that a large primary isotope effect dominates. The KIEs determined by analyzing the products after a single turnover have the following values:  1:1 CH4:CD4 (19); CD3H (12); CD2H2 (9); and CH3D (4). The KIE values determined by directly observing the reactive intermediate and by monitoring product ratios are all large, consistent with complete C−H bond breaking in the oxygenation step of the reaction. However, the differences in the KIE values determined by these two methods suggest that the reaction is more complex than currently proposed. A modified mechanism introducing the possibility of hydrogen-atom reabstraction by an intermediate methyl radical is proposed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>8756490</pmid><doi>10.1021/bi960596w</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1996-08, Vol.35 (31), p.10240-10247
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_78209131
source MEDLINE; ACS Publications
subjects Computer Simulation
Deuterium
Euryarchaeota - enzymology
Isotope Labeling
Kinetics
Mass Spectrometry
Methane - metabolism
Methylosinus trichosporium
Models, Chemical
Oxidation-Reduction
Oxygenases - chemistry
Oxygenases - metabolism
Regression Analysis
Spectrophotometry
Thermodynamics
title Large Kinetic Isotope Effects in Methane Oxidation Catalyzed by Methane Monooxygenase:  Evidence for C−H Bond Cleavage in a Reaction Cycle Intermediate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Kinetic%20Isotope%20Effects%20in%20Methane%20Oxidation%20Catalyzed%20by%20Methane%20Monooxygenase:%E2%80%89%20Evidence%20for%20C%E2%88%92H%20Bond%20Cleavage%20in%20a%20Reaction%20Cycle%20Intermediate&rft.jtitle=Biochemistry%20(Easton)&rft.au=Nesheim,%20Jeremy%20C&rft.date=1996-08-06&rft.volume=35&rft.issue=31&rft.spage=10240&rft.epage=10247&rft.pages=10240-10247&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi960596w&rft_dat=%3Cproquest_cross%3E15655932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15655932&rft_id=info:pmid/8756490&rfr_iscdi=true