Evaluation of the Stability and Animal Biodistribution of Gadolinium(III) Benzylamine-Derivatized Diethylenetriaminepentaacetic Acid

The need for a readily available Gd(III) bifunctional chelate for protein conjugation has led to the development of LDTPA (N,N-bis[2-[N‘,N‘-bis(carboxymethyl)amino]ethyl]-4-amino-l-phenylalanine). The benzylamine group is readily converted to the isothiocyanato group (SCN-LDTPA) by treatment of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 1996-08, Vol.39 (16), p.3096-3106
Hauptverfasser: Deal, Kim A, Motekaitis, Ramunas J, Martell, Arthur E, Welch, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3106
container_issue 16
container_start_page 3096
container_title Journal of medicinal chemistry
container_volume 39
creator Deal, Kim A
Motekaitis, Ramunas J
Martell, Arthur E
Welch, Michael J
description The need for a readily available Gd(III) bifunctional chelate for protein conjugation has led to the development of LDTPA (N,N-bis[2-[N‘,N‘-bis(carboxymethyl)amino]ethyl]-4-amino-l-phenylalanine). The benzylamine group is readily converted to the isothiocyanato group (SCN-LDTPA) by treatment of the lithium salt of LDTPA with thiophosgene. SCN-LDTPA was successfully conjugated to three proteins, BSA (bovine serum albumin), mannose BSA, and galactose BSA. All protein conjugates were labeled with 111In3+ or 153Gd3+. Competition of Gd-LDTPA with DTPA (diethylenetriaminepentaacetic acid) resulted in a log stability constant of 21.2. The thermodynamic stability constant of Gd-LDTPA was also measured. The log Gd(III) stability constant (log K) is 21.99, and the log protonation constants (pK a's) are 10.16, 8.92, 5.35, 3.93, 2.71, and 1.89. Comparison of the thermodynamic stability constants for Gd(LDTPA)2- with other DTPA derivatives indicates that the stability of Gd(LDTPA)2- is similar to Gd(DTPA)2- (log K = 22.4), and higher than DTPA derivatives with one or more carboxylate arm(s) functionalized. The biodistribution of 153Gd-LDTPA−protein conjugates is consistent with the in vitro stability measurements. By monitoring the bone accumulation of 153Gd3+, 153Gd-LDTPA−protein shows a higher in vivo stability than 153Gd-DTPA−protein, the radiolabeled protein conjugate formed by the reaction of DTPA dianhydride with proteins.
doi_str_mv 10.1021/jm9602118
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78208038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>78208038</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-792583dbf77a6f03fedeaa798bf732af2d95385a4ffcb8b82b364aa0679cbe1c3</originalsourceid><addsrcrecordid>eNptkE1v1DAQhiMEKkvhwA9AygFQewg4dhI7x-33ihUgtXDoxZo4Y9WL4yy2U3V75odj2GVPnEaa95lXoyfLXpfkQ0lo-XE1tE2apXiSzcqakqISpHqazQihtKANZc-zFyGsCCGspOwgOxC8bhtGZtmv83uwE0QzunzUebzD_DpCZ6yJmxxcn8-dGcDmJ2bsTYjedNM_9hL60RpnpuFosVgc5yfoHjcWBuOwOENv7lPrI_b5mcF4t7HoMJ3_jdfoIoDCaFQ-V6Z_mT3TYAO-2s3D7NvF-c3pVbH8crk4nS8LYJzHgre0FqzvNOfQaMI09gjAW5E2jIKmfVszUUOltepEJ2jHmgqANLxVHZaKHWbvt71rP_6cMEQ5mKDQWnA4TkFyQYkgTCTweAsqP4bgUcu1Txr8RpZE_jEu98YT-2ZXOnUD9ntypzjlb3c5BAVWe3DKhD3GyoZXvE5YscWSZXzYx-B_yIYzXsubr9ey_XT7_eLz7VJeJf7dlgcV5GqcvEvm_vPeb1EJpi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78208038</pqid></control><display><type>article</type><title>Evaluation of the Stability and Animal Biodistribution of Gadolinium(III) Benzylamine-Derivatized Diethylenetriaminepentaacetic Acid</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Deal, Kim A ; Motekaitis, Ramunas J ; Martell, Arthur E ; Welch, Michael J</creator><creatorcontrib>Deal, Kim A ; Motekaitis, Ramunas J ; Martell, Arthur E ; Welch, Michael J</creatorcontrib><description>The need for a readily available Gd(III) bifunctional chelate for protein conjugation has led to the development of LDTPA (N,N-bis[2-[N‘,N‘-bis(carboxymethyl)amino]ethyl]-4-amino-l-phenylalanine). The benzylamine group is readily converted to the isothiocyanato group (SCN-LDTPA) by treatment of the lithium salt of LDTPA with thiophosgene. SCN-LDTPA was successfully conjugated to three proteins, BSA (bovine serum albumin), mannose BSA, and galactose BSA. All protein conjugates were labeled with 111In3+ or 153Gd3+. Competition of Gd-LDTPA with DTPA (diethylenetriaminepentaacetic acid) resulted in a log stability constant of 21.2. The thermodynamic stability constant of Gd-LDTPA was also measured. The log Gd(III) stability constant (log K) is 21.99, and the log protonation constants (pK a's) are 10.16, 8.92, 5.35, 3.93, 2.71, and 1.89. Comparison of the thermodynamic stability constants for Gd(LDTPA)2- with other DTPA derivatives indicates that the stability of Gd(LDTPA)2- is similar to Gd(DTPA)2- (log K = 22.4), and higher than DTPA derivatives with one or more carboxylate arm(s) functionalized. The biodistribution of 153Gd-LDTPA−protein conjugates is consistent with the in vitro stability measurements. By monitoring the bone accumulation of 153Gd3+, 153Gd-LDTPA−protein shows a higher in vivo stability than 153Gd-DTPA−protein, the radiolabeled protein conjugate formed by the reaction of DTPA dianhydride with proteins.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm9602118</identifier><identifier>PMID: 8759630</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Binding, Competitive ; Biological and medical sciences ; Bone and Bones - metabolism ; Chelating Agents - chemical synthesis ; Chelating Agents - chemistry ; Chelating Agents - pharmacokinetics ; Chromatography, Thin Layer ; Cross-Linking Reagents - metabolism ; Drug Stability ; Feces - chemistry ; Female ; Gadolinium ; Galactose ; General pharmacology ; Glycine - analogs &amp; derivatives ; Glycine - chemical synthesis ; Glycine - chemistry ; Glycine - pharmacokinetics ; Hydrogen-Ion Concentration ; Indium ; Mannose ; Medical sciences ; Molecular Structure ; Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions ; Pharmacology. Drug treatments ; Phenylalanine - analogs &amp; derivatives ; Phenylalanine - chemical synthesis ; Phenylalanine - chemistry ; Phenylalanine - pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Serum Albumin, Bovine - pharmacokinetics ; Tissue Distribution</subject><ispartof>Journal of medicinal chemistry, 1996-08, Vol.39 (16), p.3096-3106</ispartof><rights>Copyright © 1996 American Chemical Society</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-792583dbf77a6f03fedeaa798bf732af2d95385a4ffcb8b82b364aa0679cbe1c3</citedby><cites>FETCH-LOGICAL-a377t-792583dbf77a6f03fedeaa798bf732af2d95385a4ffcb8b82b364aa0679cbe1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm9602118$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm9602118$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3167475$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8759630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deal, Kim A</creatorcontrib><creatorcontrib>Motekaitis, Ramunas J</creatorcontrib><creatorcontrib>Martell, Arthur E</creatorcontrib><creatorcontrib>Welch, Michael J</creatorcontrib><title>Evaluation of the Stability and Animal Biodistribution of Gadolinium(III) Benzylamine-Derivatized Diethylenetriaminepentaacetic Acid</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>The need for a readily available Gd(III) bifunctional chelate for protein conjugation has led to the development of LDTPA (N,N-bis[2-[N‘,N‘-bis(carboxymethyl)amino]ethyl]-4-amino-l-phenylalanine). The benzylamine group is readily converted to the isothiocyanato group (SCN-LDTPA) by treatment of the lithium salt of LDTPA with thiophosgene. SCN-LDTPA was successfully conjugated to three proteins, BSA (bovine serum albumin), mannose BSA, and galactose BSA. All protein conjugates were labeled with 111In3+ or 153Gd3+. Competition of Gd-LDTPA with DTPA (diethylenetriaminepentaacetic acid) resulted in a log stability constant of 21.2. The thermodynamic stability constant of Gd-LDTPA was also measured. The log Gd(III) stability constant (log K) is 21.99, and the log protonation constants (pK a's) are 10.16, 8.92, 5.35, 3.93, 2.71, and 1.89. Comparison of the thermodynamic stability constants for Gd(LDTPA)2- with other DTPA derivatives indicates that the stability of Gd(LDTPA)2- is similar to Gd(DTPA)2- (log K = 22.4), and higher than DTPA derivatives with one or more carboxylate arm(s) functionalized. The biodistribution of 153Gd-LDTPA−protein conjugates is consistent with the in vitro stability measurements. By monitoring the bone accumulation of 153Gd3+, 153Gd-LDTPA−protein shows a higher in vivo stability than 153Gd-DTPA−protein, the radiolabeled protein conjugate formed by the reaction of DTPA dianhydride with proteins.</description><subject>Animals</subject><subject>Binding, Competitive</subject><subject>Biological and medical sciences</subject><subject>Bone and Bones - metabolism</subject><subject>Chelating Agents - chemical synthesis</subject><subject>Chelating Agents - chemistry</subject><subject>Chelating Agents - pharmacokinetics</subject><subject>Chromatography, Thin Layer</subject><subject>Cross-Linking Reagents - metabolism</subject><subject>Drug Stability</subject><subject>Feces - chemistry</subject><subject>Female</subject><subject>Gadolinium</subject><subject>Galactose</subject><subject>General pharmacology</subject><subject>Glycine - analogs &amp; derivatives</subject><subject>Glycine - chemical synthesis</subject><subject>Glycine - chemistry</subject><subject>Glycine - pharmacokinetics</subject><subject>Hydrogen-Ion Concentration</subject><subject>Indium</subject><subject>Mannose</subject><subject>Medical sciences</subject><subject>Molecular Structure</subject><subject>Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions</subject><subject>Pharmacology. Drug treatments</subject><subject>Phenylalanine - analogs &amp; derivatives</subject><subject>Phenylalanine - chemical synthesis</subject><subject>Phenylalanine - chemistry</subject><subject>Phenylalanine - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Serum Albumin, Bovine - pharmacokinetics</subject><subject>Tissue Distribution</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1v1DAQhiMEKkvhwA9AygFQewg4dhI7x-33ihUgtXDoxZo4Y9WL4yy2U3V75odj2GVPnEaa95lXoyfLXpfkQ0lo-XE1tE2apXiSzcqakqISpHqazQihtKANZc-zFyGsCCGspOwgOxC8bhtGZtmv83uwE0QzunzUebzD_DpCZ6yJmxxcn8-dGcDmJ2bsTYjedNM_9hL60RpnpuFosVgc5yfoHjcWBuOwOENv7lPrI_b5mcF4t7HoMJ3_jdfoIoDCaFQ-V6Z_mT3TYAO-2s3D7NvF-c3pVbH8crk4nS8LYJzHgre0FqzvNOfQaMI09gjAW5E2jIKmfVszUUOltepEJ2jHmgqANLxVHZaKHWbvt71rP_6cMEQ5mKDQWnA4TkFyQYkgTCTweAsqP4bgUcu1Txr8RpZE_jEu98YT-2ZXOnUD9ntypzjlb3c5BAVWe3DKhD3GyoZXvE5YscWSZXzYx-B_yIYzXsubr9ey_XT7_eLz7VJeJf7dlgcV5GqcvEvm_vPeb1EJpi4</recordid><startdate>19960802</startdate><enddate>19960802</enddate><creator>Deal, Kim A</creator><creator>Motekaitis, Ramunas J</creator><creator>Martell, Arthur E</creator><creator>Welch, Michael J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960802</creationdate><title>Evaluation of the Stability and Animal Biodistribution of Gadolinium(III) Benzylamine-Derivatized Diethylenetriaminepentaacetic Acid</title><author>Deal, Kim A ; Motekaitis, Ramunas J ; Martell, Arthur E ; Welch, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-792583dbf77a6f03fedeaa798bf732af2d95385a4ffcb8b82b364aa0679cbe1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Binding, Competitive</topic><topic>Biological and medical sciences</topic><topic>Bone and Bones - metabolism</topic><topic>Chelating Agents - chemical synthesis</topic><topic>Chelating Agents - chemistry</topic><topic>Chelating Agents - pharmacokinetics</topic><topic>Chromatography, Thin Layer</topic><topic>Cross-Linking Reagents - metabolism</topic><topic>Drug Stability</topic><topic>Feces - chemistry</topic><topic>Female</topic><topic>Gadolinium</topic><topic>Galactose</topic><topic>General pharmacology</topic><topic>Glycine - analogs &amp; derivatives</topic><topic>Glycine - chemical synthesis</topic><topic>Glycine - chemistry</topic><topic>Glycine - pharmacokinetics</topic><topic>Hydrogen-Ion Concentration</topic><topic>Indium</topic><topic>Mannose</topic><topic>Medical sciences</topic><topic>Molecular Structure</topic><topic>Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions</topic><topic>Pharmacology. Drug treatments</topic><topic>Phenylalanine - analogs &amp; derivatives</topic><topic>Phenylalanine - chemical synthesis</topic><topic>Phenylalanine - chemistry</topic><topic>Phenylalanine - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Serum Albumin, Bovine - pharmacokinetics</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deal, Kim A</creatorcontrib><creatorcontrib>Motekaitis, Ramunas J</creatorcontrib><creatorcontrib>Martell, Arthur E</creatorcontrib><creatorcontrib>Welch, Michael J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deal, Kim A</au><au>Motekaitis, Ramunas J</au><au>Martell, Arthur E</au><au>Welch, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the Stability and Animal Biodistribution of Gadolinium(III) Benzylamine-Derivatized Diethylenetriaminepentaacetic Acid</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>1996-08-02</date><risdate>1996</risdate><volume>39</volume><issue>16</issue><spage>3096</spage><epage>3106</epage><pages>3096-3106</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>The need for a readily available Gd(III) bifunctional chelate for protein conjugation has led to the development of LDTPA (N,N-bis[2-[N‘,N‘-bis(carboxymethyl)amino]ethyl]-4-amino-l-phenylalanine). The benzylamine group is readily converted to the isothiocyanato group (SCN-LDTPA) by treatment of the lithium salt of LDTPA with thiophosgene. SCN-LDTPA was successfully conjugated to three proteins, BSA (bovine serum albumin), mannose BSA, and galactose BSA. All protein conjugates were labeled with 111In3+ or 153Gd3+. Competition of Gd-LDTPA with DTPA (diethylenetriaminepentaacetic acid) resulted in a log stability constant of 21.2. The thermodynamic stability constant of Gd-LDTPA was also measured. The log Gd(III) stability constant (log K) is 21.99, and the log protonation constants (pK a's) are 10.16, 8.92, 5.35, 3.93, 2.71, and 1.89. Comparison of the thermodynamic stability constants for Gd(LDTPA)2- with other DTPA derivatives indicates that the stability of Gd(LDTPA)2- is similar to Gd(DTPA)2- (log K = 22.4), and higher than DTPA derivatives with one or more carboxylate arm(s) functionalized. The biodistribution of 153Gd-LDTPA−protein conjugates is consistent with the in vitro stability measurements. By monitoring the bone accumulation of 153Gd3+, 153Gd-LDTPA−protein shows a higher in vivo stability than 153Gd-DTPA−protein, the radiolabeled protein conjugate formed by the reaction of DTPA dianhydride with proteins.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>8759630</pmid><doi>10.1021/jm9602118</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 1996-08, Vol.39 (16), p.3096-3106
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_78208038
source MEDLINE; American Chemical Society Journals
subjects Animals
Binding, Competitive
Biological and medical sciences
Bone and Bones - metabolism
Chelating Agents - chemical synthesis
Chelating Agents - chemistry
Chelating Agents - pharmacokinetics
Chromatography, Thin Layer
Cross-Linking Reagents - metabolism
Drug Stability
Feces - chemistry
Female
Gadolinium
Galactose
General pharmacology
Glycine - analogs & derivatives
Glycine - chemical synthesis
Glycine - chemistry
Glycine - pharmacokinetics
Hydrogen-Ion Concentration
Indium
Mannose
Medical sciences
Molecular Structure
Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions
Pharmacology. Drug treatments
Phenylalanine - analogs & derivatives
Phenylalanine - chemical synthesis
Phenylalanine - chemistry
Phenylalanine - pharmacokinetics
Rats
Rats, Sprague-Dawley
Serum Albumin, Bovine - pharmacokinetics
Tissue Distribution
title Evaluation of the Stability and Animal Biodistribution of Gadolinium(III) Benzylamine-Derivatized Diethylenetriaminepentaacetic Acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20Stability%20and%20Animal%20Biodistribution%20of%20Gadolinium(III)%20Benzylamine-Derivatized%20Diethylenetriaminepentaacetic%20Acid&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Deal,%20Kim%20A&rft.date=1996-08-02&rft.volume=39&rft.issue=16&rft.spage=3096&rft.epage=3106&rft.pages=3096-3106&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm9602118&rft_dat=%3Cproquest_cross%3E78208038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78208038&rft_id=info:pmid/8759630&rfr_iscdi=true