Human N‐Acetylglucosaminyltransferase III Gene is Transcribed from Multiple Promoters
We have isolated cDNA clones for the human N‐acetylglucosaminyltransferase III (GlcNAc‐transferase III) gene. Two of them, H15 and H20, contain 5′ non‐coding regions that are totally different from each other except for 8 bp adjacent to the putative initiation codon. Analysis of one of the genomic c...
Gespeichert in:
Veröffentlicht in: | European journal of biochemistry 1996-06, Vol.238 (3), p.853-861 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 861 |
---|---|
container_issue | 3 |
container_start_page | 853 |
container_title | European journal of biochemistry |
container_volume | 238 |
creator | Koyama, Nobuto Miyoshi, Eiji Ihara, Yoshito Kang, Rujun Nishikawa, Atsushi Taniguchi, Naoyuki |
description | We have isolated cDNA clones for the human N‐acetylglucosaminyltransferase III (GlcNAc‐transferase III) gene. Two of them, H15 and H20, contain 5′ non‐coding regions that are totally different from each other except for 8 bp adjacent to the putative initiation codon. Analysis of one of the genomic cosmid clones containing the GlcNAc–transferase III coding region, Hug3, revealed that the 5′ non‐coding regions of H15 and H20 contain two and one exons, respectively, in addition to the exon containing the coding region (exon 1). These have arisen as the result of alternative splicing. The transcription‐initiation sites were determined by primer‐extension analysis and 5′‐rapid amplification of cDNA ends (RACE). Both H15‐specific and H20‐specific primers gave cDNAs longer than those expected from the lengths of H15 and H20, and a primer complementary to the region around the intron/exon junction near the putative initiation codon also gave distinct signals. Promoter activities of the 5′‐flanking regions of H15, H20 and exon 1 were measured in a human hepatoblastoma cell line, HuH‐6 cells by luciferase assays. The 5′‐flanking region of exon 1 was the most active, whilst that of H15 was several times less active, and that of H20 was inactive. Our study suggests that multiple promoters of the GlcNAc‐transferase III gene contribute to the complex regulation of this gene. |
doi_str_mv | 10.1111/j.1432-1033.1996.0853w.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78172105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15872237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444W-cc9390f52a69c4362b0d906d75170c2ae711ef250d43502191ce297a225733613</originalsourceid><addsrcrecordid>eNqNkM1q3DAQx0VpSLdpH6GgU292R5IlWZdCGvKxkCaBpuxRaOVx8SLbW8km2Vseoc_YJ4mdXXJt5zIf___MwI8QyiBnU3zZ5KwQPGMgRM6MUTmUUjzkj2_I4lV4SxYArMi4keodeZ_SBgCUUfqYHJcalDKwIKursXUdvfn79OfU47ALv8Lo--TaptuFIbou1RhdQrpcLukldkibRO_nuY_NGitax76l38cwNNuA9G7q-gFj-kCOahcSfjzkE_Lz4vz-7Cq7vr1cnp1eZ74oilXmvREGasmdMr4Qiq-hMqAqLZkGzx1qxrDmEqpCSODMMI_caMe51EIoJk7I5_3dbex_j5gG2zbJYwiuw35MVpdMcwbyn0YmS8250JOx3Bt97FOKWNttbFoXd5aBneHbjZ0Z25mxneHbF_j2cVr9dPgxrlusXhcPtCf9615_aALu_vuuvTj_9mMqV-IZEmuT7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15872237</pqid></control><display><type>article</type><title>Human N‐Acetylglucosaminyltransferase III Gene is Transcribed from Multiple Promoters</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Koyama, Nobuto ; Miyoshi, Eiji ; Ihara, Yoshito ; Kang, Rujun ; Nishikawa, Atsushi ; Taniguchi, Naoyuki</creator><creatorcontrib>Koyama, Nobuto ; Miyoshi, Eiji ; Ihara, Yoshito ; Kang, Rujun ; Nishikawa, Atsushi ; Taniguchi, Naoyuki</creatorcontrib><description>We have isolated cDNA clones for the human N‐acetylglucosaminyltransferase III (GlcNAc‐transferase III) gene. Two of them, H15 and H20, contain 5′ non‐coding regions that are totally different from each other except for 8 bp adjacent to the putative initiation codon. Analysis of one of the genomic cosmid clones containing the GlcNAc–transferase III coding region, Hug3, revealed that the 5′ non‐coding regions of H15 and H20 contain two and one exons, respectively, in addition to the exon containing the coding region (exon 1). These have arisen as the result of alternative splicing. The transcription‐initiation sites were determined by primer‐extension analysis and 5′‐rapid amplification of cDNA ends (RACE). Both H15‐specific and H20‐specific primers gave cDNAs longer than those expected from the lengths of H15 and H20, and a primer complementary to the region around the intron/exon junction near the putative initiation codon also gave distinct signals. Promoter activities of the 5′‐flanking regions of H15, H20 and exon 1 were measured in a human hepatoblastoma cell line, HuH‐6 cells by luciferase assays. The 5′‐flanking region of exon 1 was the most active, whilst that of H15 was several times less active, and that of H20 was inactive. Our study suggests that multiple promoters of the GlcNAc‐transferase III gene contribute to the complex regulation of this gene.</description><identifier>ISSN: 0014-2956</identifier><identifier>EISSN: 1432-1033</identifier><identifier>DOI: 10.1111/j.1432-1033.1996.0853w.x</identifier><identifier>PMID: 8706690</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Alternative Splicing ; Base Sequence ; Chromosome Mapping ; DNA Primers ; Gene Expression Regulation, Neoplastic ; gene promoter system ; genomic structure ; Hepatoblastoma - genetics ; Hepatoblastoma - pathology ; Humans ; luciferase assay ; Molecular Sequence Data ; N-Acetylglucosaminyltransferases - biosynthesis ; N-Acetylglucosaminyltransferases - genetics ; N‐acetylglucosaminyltransferase III ; N‐linked oligosaccharide ; Polymerase Chain Reaction - methods ; Promoter Regions, Genetic ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - genetics ; Sequence Analysis, DNA ; Transcription, Genetic ; Tumor Cells, Cultured</subject><ispartof>European journal of biochemistry, 1996-06, Vol.238 (3), p.853-861</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444W-cc9390f52a69c4362b0d906d75170c2ae711ef250d43502191ce297a225733613</citedby><cites>FETCH-LOGICAL-c444W-cc9390f52a69c4362b0d906d75170c2ae711ef250d43502191ce297a225733613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1432-1033.1996.0853w.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1432-1033.1996.0853w.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8706690$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koyama, Nobuto</creatorcontrib><creatorcontrib>Miyoshi, Eiji</creatorcontrib><creatorcontrib>Ihara, Yoshito</creatorcontrib><creatorcontrib>Kang, Rujun</creatorcontrib><creatorcontrib>Nishikawa, Atsushi</creatorcontrib><creatorcontrib>Taniguchi, Naoyuki</creatorcontrib><title>Human N‐Acetylglucosaminyltransferase III Gene is Transcribed from Multiple Promoters</title><title>European journal of biochemistry</title><addtitle>Eur J Biochem</addtitle><description>We have isolated cDNA clones for the human N‐acetylglucosaminyltransferase III (GlcNAc‐transferase III) gene. Two of them, H15 and H20, contain 5′ non‐coding regions that are totally different from each other except for 8 bp adjacent to the putative initiation codon. Analysis of one of the genomic cosmid clones containing the GlcNAc–transferase III coding region, Hug3, revealed that the 5′ non‐coding regions of H15 and H20 contain two and one exons, respectively, in addition to the exon containing the coding region (exon 1). These have arisen as the result of alternative splicing. The transcription‐initiation sites were determined by primer‐extension analysis and 5′‐rapid amplification of cDNA ends (RACE). Both H15‐specific and H20‐specific primers gave cDNAs longer than those expected from the lengths of H15 and H20, and a primer complementary to the region around the intron/exon junction near the putative initiation codon also gave distinct signals. Promoter activities of the 5′‐flanking regions of H15, H20 and exon 1 were measured in a human hepatoblastoma cell line, HuH‐6 cells by luciferase assays. The 5′‐flanking region of exon 1 was the most active, whilst that of H15 was several times less active, and that of H20 was inactive. Our study suggests that multiple promoters of the GlcNAc‐transferase III gene contribute to the complex regulation of this gene.</description><subject>Alternative Splicing</subject><subject>Base Sequence</subject><subject>Chromosome Mapping</subject><subject>DNA Primers</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>gene promoter system</subject><subject>genomic structure</subject><subject>Hepatoblastoma - genetics</subject><subject>Hepatoblastoma - pathology</subject><subject>Humans</subject><subject>luciferase assay</subject><subject>Molecular Sequence Data</subject><subject>N-Acetylglucosaminyltransferases - biosynthesis</subject><subject>N-Acetylglucosaminyltransferases - genetics</subject><subject>N‐acetylglucosaminyltransferase III</subject><subject>N‐linked oligosaccharide</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Promoter Regions, Genetic</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Transcription, Genetic</subject><subject>Tumor Cells, Cultured</subject><issn>0014-2956</issn><issn>1432-1033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1q3DAQx0VpSLdpH6GgU292R5IlWZdCGvKxkCaBpuxRaOVx8SLbW8km2Vseoc_YJ4mdXXJt5zIf___MwI8QyiBnU3zZ5KwQPGMgRM6MUTmUUjzkj2_I4lV4SxYArMi4keodeZ_SBgCUUfqYHJcalDKwIKursXUdvfn79OfU47ALv8Lo--TaptuFIbou1RhdQrpcLukldkibRO_nuY_NGitax76l38cwNNuA9G7q-gFj-kCOahcSfjzkE_Lz4vz-7Cq7vr1cnp1eZ74oilXmvREGasmdMr4Qiq-hMqAqLZkGzx1qxrDmEqpCSODMMI_caMe51EIoJk7I5_3dbex_j5gG2zbJYwiuw35MVpdMcwbyn0YmS8250JOx3Bt97FOKWNttbFoXd5aBneHbjZ0Z25mxneHbF_j2cVr9dPgxrlusXhcPtCf9615_aALu_vuuvTj_9mMqV-IZEmuT7w</recordid><startdate>199606</startdate><enddate>199606</enddate><creator>Koyama, Nobuto</creator><creator>Miyoshi, Eiji</creator><creator>Ihara, Yoshito</creator><creator>Kang, Rujun</creator><creator>Nishikawa, Atsushi</creator><creator>Taniguchi, Naoyuki</creator><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>199606</creationdate><title>Human N‐Acetylglucosaminyltransferase III Gene is Transcribed from Multiple Promoters</title><author>Koyama, Nobuto ; Miyoshi, Eiji ; Ihara, Yoshito ; Kang, Rujun ; Nishikawa, Atsushi ; Taniguchi, Naoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444W-cc9390f52a69c4362b0d906d75170c2ae711ef250d43502191ce297a225733613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Alternative Splicing</topic><topic>Base Sequence</topic><topic>Chromosome Mapping</topic><topic>DNA Primers</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>gene promoter system</topic><topic>genomic structure</topic><topic>Hepatoblastoma - genetics</topic><topic>Hepatoblastoma - pathology</topic><topic>Humans</topic><topic>luciferase assay</topic><topic>Molecular Sequence Data</topic><topic>N-Acetylglucosaminyltransferases - biosynthesis</topic><topic>N-Acetylglucosaminyltransferases - genetics</topic><topic>N‐acetylglucosaminyltransferase III</topic><topic>N‐linked oligosaccharide</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Promoter Regions, Genetic</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Transcription, Genetic</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koyama, Nobuto</creatorcontrib><creatorcontrib>Miyoshi, Eiji</creatorcontrib><creatorcontrib>Ihara, Yoshito</creatorcontrib><creatorcontrib>Kang, Rujun</creatorcontrib><creatorcontrib>Nishikawa, Atsushi</creatorcontrib><creatorcontrib>Taniguchi, Naoyuki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koyama, Nobuto</au><au>Miyoshi, Eiji</au><au>Ihara, Yoshito</au><au>Kang, Rujun</au><au>Nishikawa, Atsushi</au><au>Taniguchi, Naoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human N‐Acetylglucosaminyltransferase III Gene is Transcribed from Multiple Promoters</atitle><jtitle>European journal of biochemistry</jtitle><addtitle>Eur J Biochem</addtitle><date>1996-06</date><risdate>1996</risdate><volume>238</volume><issue>3</issue><spage>853</spage><epage>861</epage><pages>853-861</pages><issn>0014-2956</issn><eissn>1432-1033</eissn><abstract>We have isolated cDNA clones for the human N‐acetylglucosaminyltransferase III (GlcNAc‐transferase III) gene. Two of them, H15 and H20, contain 5′ non‐coding regions that are totally different from each other except for 8 bp adjacent to the putative initiation codon. Analysis of one of the genomic cosmid clones containing the GlcNAc–transferase III coding region, Hug3, revealed that the 5′ non‐coding regions of H15 and H20 contain two and one exons, respectively, in addition to the exon containing the coding region (exon 1). These have arisen as the result of alternative splicing. The transcription‐initiation sites were determined by primer‐extension analysis and 5′‐rapid amplification of cDNA ends (RACE). Both H15‐specific and H20‐specific primers gave cDNAs longer than those expected from the lengths of H15 and H20, and a primer complementary to the region around the intron/exon junction near the putative initiation codon also gave distinct signals. Promoter activities of the 5′‐flanking regions of H15, H20 and exon 1 were measured in a human hepatoblastoma cell line, HuH‐6 cells by luciferase assays. The 5′‐flanking region of exon 1 was the most active, whilst that of H15 was several times less active, and that of H20 was inactive. Our study suggests that multiple promoters of the GlcNAc‐transferase III gene contribute to the complex regulation of this gene.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>8706690</pmid><doi>10.1111/j.1432-1033.1996.0853w.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-2956 |
ispartof | European journal of biochemistry, 1996-06, Vol.238 (3), p.853-861 |
issn | 0014-2956 1432-1033 |
language | eng |
recordid | cdi_proquest_miscellaneous_78172105 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Alma/SFX Local Collection |
subjects | Alternative Splicing Base Sequence Chromosome Mapping DNA Primers Gene Expression Regulation, Neoplastic gene promoter system genomic structure Hepatoblastoma - genetics Hepatoblastoma - pathology Humans luciferase assay Molecular Sequence Data N-Acetylglucosaminyltransferases - biosynthesis N-Acetylglucosaminyltransferases - genetics N‐acetylglucosaminyltransferase III N‐linked oligosaccharide Polymerase Chain Reaction - methods Promoter Regions, Genetic Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - genetics Sequence Analysis, DNA Transcription, Genetic Tumor Cells, Cultured |
title | Human N‐Acetylglucosaminyltransferase III Gene is Transcribed from Multiple Promoters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20N%E2%80%90Acetylglucosaminyltransferase%20III%20Gene%20is%20Transcribed%20from%20Multiple%20Promoters&rft.jtitle=European%20journal%20of%20biochemistry&rft.au=Koyama,%20Nobuto&rft.date=1996-06&rft.volume=238&rft.issue=3&rft.spage=853&rft.epage=861&rft.pages=853-861&rft.issn=0014-2956&rft.eissn=1432-1033&rft_id=info:doi/10.1111/j.1432-1033.1996.0853w.x&rft_dat=%3Cproquest_cross%3E15872237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15872237&rft_id=info:pmid/8706690&rfr_iscdi=true |