Complete nucleotide sequence of a cell culture-adapted variant of hepatitis a virus: Comparison with wild-type virus with restricted capacity for in vitro replication
To determine the molecular changes associated with adaptation of hepatitis A virus (HAV) to growth in cell culture, the genome of a cell culture-adapted variant of HM175 strain HAV (p16 HM175, 16th in vitro passage level) was molecularly cloned and the complete nucleotide sequence of the virus was d...
Gespeichert in:
Veröffentlicht in: | Virology (New York, N.Y.) N.Y.), 1988-04, Vol.163 (2), p.299-307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 2 |
container_start_page | 299 |
container_title | Virology (New York, N.Y.) |
container_volume | 163 |
creator | Jansen, Robert W. Newbold, John E. Lemon, Stanley M. |
description | To determine the molecular changes associated with adaptation of hepatitis A virus (HAV) to growth in cell culture, the genome of a cell culture-adapted variant of HM175 strain HAV (p16 HM175, 16th
in vitro passage level) was molecularly cloned and the complete nucleotide sequence of the virus was determined. Compared with wild-type virus, p16 HM175 replicates efficiently in monkey kidney (BS-C-1) cells (approximately 58 RNA-containing particles per one infectious unit, compared with 2.4 × 10
5 for wild-type HM175). The nucleotide sequence of p16 HM 175 revealed a total of 19 mutations from the wild-type genome, including 5 mutations in the 5′ nontranslated region, 1 mutation in the 3′ nontranslated region, and 13 mutations predicting 8 changes in the amino acid sequences of HAV proteins. Only one amino acid substitution occurred among the capsid proteins (VP2), while others involved proteins 2A, 213, 2C, Vl3g, and 3Dpol. When the sequence of p16 virus was compared with that reported previously for an independently isolated, cell culture-adapted variant of HM175 virus (J. I. Cohen
et al., (1987).
Proc. Natl. Acad. Sci. USA 84, 2497–2501), there were three identical mutations in nontranslated regions of the RNA, and four mutations involving identical amino acids in proteins VP2, 2B, and 3Dpol. The distribution of these mutations within the genome suggests that changes in RNA replication may be of primary importance in adaptation of the virus to growth
in vitro. These data are thus helpful in understanding the molecular basis of adaptation of HAV to cell culture and, since attenuation frequently accompanies adaptation of virus to growth in cell culture, may be of benefit in planning for attenuated vaccine development. |
doi_str_mv | 10.1016/0042-6822(88)90270-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78155169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>004268228890270X</els_id><sourcerecordid>78155169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-821c5978eacc0b6df0959d0f2fad7043143b3a8afe5dea1db1f45b5b751a38c93</originalsourceid><addsrcrecordid>eNqFkcuqFDEQhoMox_HoGyhkIaKL1qTTl7QLQQZvcMCNwtmF6qTCifR02iQ9Mi_kc5rYwyx1k5DUVz9FfYQ85ew1Z7x7w1hTV52s65dSvhpY3bPq9h7ZcTZ0FRMNv092F-QheRTjD5bffc-uyFUthWBM7sjvvT8sEyak86on9MkZpBF_rjhrpN5SoBqniep1SmvACgwsCQ09QnAwp0Lc4QLJJRcze3RhjW9pCc1A9DP95dJdPiZTpdOCG7B9BowpOF3SNCygXTpR6wN1c6ZS8BlYJqdztp8fkwcWpohPzvc1-f7xw7f95-rm66cv-_c3lRaiTpWsuW6HXiJozcbOWDa0g2G2tmB61gjeiFGABIutQeBm5LZpx3bsWw5C6kFckxdb7hJ83kFM6uBiWQDM6Neoesnblnf_B3nLuqFpZAabDdTBxxjQqiW4A4ST4kwVj6pIUkWSklL99ahuc9uzc_46HtBcms7icv35uQ5Rw2QDzNrFC9b3Nee8YO82DPPSjg6DitoVtcYF1EkZ7_49xx_Aib3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15069448</pqid></control><display><type>article</type><title>Complete nucleotide sequence of a cell culture-adapted variant of hepatitis a virus: Comparison with wild-type virus with restricted capacity for in vitro replication</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jansen, Robert W. ; Newbold, John E. ; Lemon, Stanley M.</creator><creatorcontrib>Jansen, Robert W. ; Newbold, John E. ; Lemon, Stanley M.</creatorcontrib><description>To determine the molecular changes associated with adaptation of hepatitis A virus (HAV) to growth in cell culture, the genome of a cell culture-adapted variant of HM175 strain HAV (p16 HM175, 16th
in vitro passage level) was molecularly cloned and the complete nucleotide sequence of the virus was determined. Compared with wild-type virus, p16 HM175 replicates efficiently in monkey kidney (BS-C-1) cells (approximately 58 RNA-containing particles per one infectious unit, compared with 2.4 × 10
5 for wild-type HM175). The nucleotide sequence of p16 HM 175 revealed a total of 19 mutations from the wild-type genome, including 5 mutations in the 5′ nontranslated region, 1 mutation in the 3′ nontranslated region, and 13 mutations predicting 8 changes in the amino acid sequences of HAV proteins. Only one amino acid substitution occurred among the capsid proteins (VP2), while others involved proteins 2A, 213, 2C, Vl3g, and 3Dpol. When the sequence of p16 virus was compared with that reported previously for an independently isolated, cell culture-adapted variant of HM175 virus (J. I. Cohen
et al., (1987).
Proc. Natl. Acad. Sci. USA 84, 2497–2501), there were three identical mutations in nontranslated regions of the RNA, and four mutations involving identical amino acids in proteins VP2, 2B, and 3Dpol. The distribution of these mutations within the genome suggests that changes in RNA replication may be of primary importance in adaptation of the virus to growth
in vitro. These data are thus helpful in understanding the molecular basis of adaptation of HAV to cell culture and, since attenuation frequently accompanies adaptation of virus to growth in cell culture, may be of benefit in planning for attenuated vaccine development.</description><identifier>ISSN: 0042-6822</identifier><identifier>EISSN: 1096-0341</identifier><identifier>DOI: 10.1016/0042-6822(88)90270-X</identifier><identifier>PMID: 2833008</identifier><identifier>CODEN: VIRLAX</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Biological and medical sciences ; Cells, Cultured ; Cercopithecus aethiops ; DNA - genetics ; Fibroblasts ; Fundamental and applied biological sciences. Psychology ; Genetics ; hepatitis A virus ; Hepatovirus - genetics ; Kidney ; Microbiology ; Virology ; Virus Cultivation ; Virus Replication</subject><ispartof>Virology (New York, N.Y.), 1988-04, Vol.163 (2), p.299-307</ispartof><rights>1988</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-821c5978eacc0b6df0959d0f2fad7043143b3a8afe5dea1db1f45b5b751a38c93</citedby><cites>FETCH-LOGICAL-c332t-821c5978eacc0b6df0959d0f2fad7043143b3a8afe5dea1db1f45b5b751a38c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0042-6822(88)90270-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7721118$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2833008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jansen, Robert W.</creatorcontrib><creatorcontrib>Newbold, John E.</creatorcontrib><creatorcontrib>Lemon, Stanley M.</creatorcontrib><title>Complete nucleotide sequence of a cell culture-adapted variant of hepatitis a virus: Comparison with wild-type virus with restricted capacity for in vitro replication</title><title>Virology (New York, N.Y.)</title><addtitle>Virology</addtitle><description>To determine the molecular changes associated with adaptation of hepatitis A virus (HAV) to growth in cell culture, the genome of a cell culture-adapted variant of HM175 strain HAV (p16 HM175, 16th
in vitro passage level) was molecularly cloned and the complete nucleotide sequence of the virus was determined. Compared with wild-type virus, p16 HM175 replicates efficiently in monkey kidney (BS-C-1) cells (approximately 58 RNA-containing particles per one infectious unit, compared with 2.4 × 10
5 for wild-type HM175). The nucleotide sequence of p16 HM 175 revealed a total of 19 mutations from the wild-type genome, including 5 mutations in the 5′ nontranslated region, 1 mutation in the 3′ nontranslated region, and 13 mutations predicting 8 changes in the amino acid sequences of HAV proteins. Only one amino acid substitution occurred among the capsid proteins (VP2), while others involved proteins 2A, 213, 2C, Vl3g, and 3Dpol. When the sequence of p16 virus was compared with that reported previously for an independently isolated, cell culture-adapted variant of HM175 virus (J. I. Cohen
et al., (1987).
Proc. Natl. Acad. Sci. USA 84, 2497–2501), there were three identical mutations in nontranslated regions of the RNA, and four mutations involving identical amino acids in proteins VP2, 2B, and 3Dpol. The distribution of these mutations within the genome suggests that changes in RNA replication may be of primary importance in adaptation of the virus to growth
in vitro. These data are thus helpful in understanding the molecular basis of adaptation of HAV to cell culture and, since attenuation frequently accompanies adaptation of virus to growth in cell culture, may be of benefit in planning for attenuated vaccine development.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>DNA - genetics</subject><subject>Fibroblasts</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>hepatitis A virus</subject><subject>Hepatovirus - genetics</subject><subject>Kidney</subject><subject>Microbiology</subject><subject>Virology</subject><subject>Virus Cultivation</subject><subject>Virus Replication</subject><issn>0042-6822</issn><issn>1096-0341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuqFDEQhoMox_HoGyhkIaKL1qTTl7QLQQZvcMCNwtmF6qTCifR02iQ9Mi_kc5rYwyx1k5DUVz9FfYQ85ew1Z7x7w1hTV52s65dSvhpY3bPq9h7ZcTZ0FRMNv092F-QheRTjD5bffc-uyFUthWBM7sjvvT8sEyak86on9MkZpBF_rjhrpN5SoBqniep1SmvACgwsCQ09QnAwp0Lc4QLJJRcze3RhjW9pCc1A9DP95dJdPiZTpdOCG7B9BowpOF3SNCygXTpR6wN1c6ZS8BlYJqdztp8fkwcWpohPzvc1-f7xw7f95-rm66cv-_c3lRaiTpWsuW6HXiJozcbOWDa0g2G2tmB61gjeiFGABIutQeBm5LZpx3bsWw5C6kFckxdb7hJ83kFM6uBiWQDM6Neoesnblnf_B3nLuqFpZAabDdTBxxjQqiW4A4ST4kwVj6pIUkWSklL99ahuc9uzc_46HtBcms7icv35uQ5Rw2QDzNrFC9b3Nee8YO82DPPSjg6DitoVtcYF1EkZ7_49xx_Aib3g</recordid><startdate>198804</startdate><enddate>198804</enddate><creator>Jansen, Robert W.</creator><creator>Newbold, John E.</creator><creator>Lemon, Stanley M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>198804</creationdate><title>Complete nucleotide sequence of a cell culture-adapted variant of hepatitis a virus: Comparison with wild-type virus with restricted capacity for in vitro replication</title><author>Jansen, Robert W. ; Newbold, John E. ; Lemon, Stanley M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-821c5978eacc0b6df0959d0f2fad7043143b3a8afe5dea1db1f45b5b751a38c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>DNA - genetics</topic><topic>Fibroblasts</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>hepatitis A virus</topic><topic>Hepatovirus - genetics</topic><topic>Kidney</topic><topic>Microbiology</topic><topic>Virology</topic><topic>Virus Cultivation</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jansen, Robert W.</creatorcontrib><creatorcontrib>Newbold, John E.</creatorcontrib><creatorcontrib>Lemon, Stanley M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Virology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jansen, Robert W.</au><au>Newbold, John E.</au><au>Lemon, Stanley M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete nucleotide sequence of a cell culture-adapted variant of hepatitis a virus: Comparison with wild-type virus with restricted capacity for in vitro replication</atitle><jtitle>Virology (New York, N.Y.)</jtitle><addtitle>Virology</addtitle><date>1988-04</date><risdate>1988</risdate><volume>163</volume><issue>2</issue><spage>299</spage><epage>307</epage><pages>299-307</pages><issn>0042-6822</issn><eissn>1096-0341</eissn><coden>VIRLAX</coden><abstract>To determine the molecular changes associated with adaptation of hepatitis A virus (HAV) to growth in cell culture, the genome of a cell culture-adapted variant of HM175 strain HAV (p16 HM175, 16th
in vitro passage level) was molecularly cloned and the complete nucleotide sequence of the virus was determined. Compared with wild-type virus, p16 HM175 replicates efficiently in monkey kidney (BS-C-1) cells (approximately 58 RNA-containing particles per one infectious unit, compared with 2.4 × 10
5 for wild-type HM175). The nucleotide sequence of p16 HM 175 revealed a total of 19 mutations from the wild-type genome, including 5 mutations in the 5′ nontranslated region, 1 mutation in the 3′ nontranslated region, and 13 mutations predicting 8 changes in the amino acid sequences of HAV proteins. Only one amino acid substitution occurred among the capsid proteins (VP2), while others involved proteins 2A, 213, 2C, Vl3g, and 3Dpol. When the sequence of p16 virus was compared with that reported previously for an independently isolated, cell culture-adapted variant of HM175 virus (J. I. Cohen
et al., (1987).
Proc. Natl. Acad. Sci. USA 84, 2497–2501), there were three identical mutations in nontranslated regions of the RNA, and four mutations involving identical amino acids in proteins VP2, 2B, and 3Dpol. The distribution of these mutations within the genome suggests that changes in RNA replication may be of primary importance in adaptation of the virus to growth
in vitro. These data are thus helpful in understanding the molecular basis of adaptation of HAV to cell culture and, since attenuation frequently accompanies adaptation of virus to growth in cell culture, may be of benefit in planning for attenuated vaccine development.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>2833008</pmid><doi>10.1016/0042-6822(88)90270-X</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0042-6822 |
ispartof | Virology (New York, N.Y.), 1988-04, Vol.163 (2), p.299-307 |
issn | 0042-6822 1096-0341 |
language | eng |
recordid | cdi_proquest_miscellaneous_78155169 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Amino Acid Sequence Animals Base Sequence Biological and medical sciences Cells, Cultured Cercopithecus aethiops DNA - genetics Fibroblasts Fundamental and applied biological sciences. Psychology Genetics hepatitis A virus Hepatovirus - genetics Kidney Microbiology Virology Virus Cultivation Virus Replication |
title | Complete nucleotide sequence of a cell culture-adapted variant of hepatitis a virus: Comparison with wild-type virus with restricted capacity for in vitro replication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20nucleotide%20sequence%20of%20a%20cell%20culture-adapted%20variant%20of%20hepatitis%20a%20virus:%20Comparison%20with%20wild-type%20virus%20with%20restricted%20capacity%20for%20in%20vitro%20replication&rft.jtitle=Virology%20(New%20York,%20N.Y.)&rft.au=Jansen,%20Robert%20W.&rft.date=1988-04&rft.volume=163&rft.issue=2&rft.spage=299&rft.epage=307&rft.pages=299-307&rft.issn=0042-6822&rft.eissn=1096-0341&rft.coden=VIRLAX&rft_id=info:doi/10.1016/0042-6822(88)90270-X&rft_dat=%3Cproquest_cross%3E78155169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15069448&rft_id=info:pmid/2833008&rft_els_id=004268228890270X&rfr_iscdi=true |