Neural networks in high-performance liquid chromatography optimization: response surface modeling
The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 1996-03, Vol.728 (1), p.47-53 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Journal of Chromatography A |
container_volume | 728 |
creator | Metting, Harm J. Coenegrach, Pierre M.J. |
description | The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models. |
doi_str_mv | 10.1016/0021-9673(96)82447-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78021632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021967396824472</els_id><sourcerecordid>78021632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b502a5fb6717ec9ddaa29dd652709767ecc1bb401396414a252da29b13866db13</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxT2AoBS-AUiZEAwB20nshAEJVfyTKlhgthz70hqSOLUTUPn0OLTqyHInvXfvTvdD6JTgK4IJu8aYkrhgPLko2GVO05THdA9NdvIhOvL-A2PCMacH6CAPGk3yCZIvMDhZRy3039Z9-si00dIslnEHrrKuka2CqDarwehILZ1tZG8XTnbLdWS73jTmR_bGtjeRA9_Z1kPkB1fJEGqshtq0i2O0X8naw8m2T9H7w_3b7Cmevz4-z-7msUpZ0cdlhqnMqpJxwkEVWktJQ2UZ5bjgLGiKlGWKSVKwlKSSZlSHiZIkOWM6tCk63-ztnF0N4HvRGK-grmULdvCC5wEGC19PUboZVM5676ASnTONdGtBsBhpihGbGLGFIv5oijF2tt0_lA3oXWiLMvi3Gx_Ck18GnPDKQMCnjQPVC23N_wd-AREqh9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78021632</pqid></control><display><type>article</type><title>Neural networks in high-performance liquid chromatography optimization: response surface modeling</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Metting, Harm J. ; Coenegrach, Pierre M.J.</creator><creatorcontrib>Metting, Harm J. ; Coenegrach, Pierre M.J.</creatorcontrib><description>The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models.</description><identifier>ISSN: 0021-9673</identifier><identifier>DOI: 10.1016/0021-9673(96)82447-2</identifier><identifier>PMID: 8673238</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Chromatography, High Pressure Liquid - methods ; Mathematics ; Neural networks ; Neural Networks (Computer) ; Optimization ; Response surface modelling</subject><ispartof>Journal of Chromatography A, 1996-03, Vol.728 (1), p.47-53</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b502a5fb6717ec9ddaa29dd652709767ecc1bb401396414a252da29b13866db13</citedby><cites>FETCH-LOGICAL-c469t-b502a5fb6717ec9ddaa29dd652709767ecc1bb401396414a252da29b13866db13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9673(96)82447-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8673238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metting, Harm J.</creatorcontrib><creatorcontrib>Coenegrach, Pierre M.J.</creatorcontrib><title>Neural networks in high-performance liquid chromatography optimization: response surface modeling</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models.</description><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Mathematics</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Optimization</subject><subject>Response surface modelling</subject><issn>0021-9673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD9PwzAQxT2AoBS-AUiZEAwB20nshAEJVfyTKlhgthz70hqSOLUTUPn0OLTqyHInvXfvTvdD6JTgK4IJu8aYkrhgPLko2GVO05THdA9NdvIhOvL-A2PCMacH6CAPGk3yCZIvMDhZRy3039Z9-si00dIslnEHrrKuka2CqDarwehILZ1tZG8XTnbLdWS73jTmR_bGtjeRA9_Z1kPkB1fJEGqshtq0i2O0X8naw8m2T9H7w_3b7Cmevz4-z-7msUpZ0cdlhqnMqpJxwkEVWktJQ2UZ5bjgLGiKlGWKSVKwlKSSZlSHiZIkOWM6tCk63-ztnF0N4HvRGK-grmULdvCC5wEGC19PUboZVM5676ASnTONdGtBsBhpihGbGLGFIv5oijF2tt0_lA3oXWiLMvi3Gx_Ck18GnPDKQMCnjQPVC23N_wd-AREqh9s</recordid><startdate>19960329</startdate><enddate>19960329</enddate><creator>Metting, Harm J.</creator><creator>Coenegrach, Pierre M.J.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960329</creationdate><title>Neural networks in high-performance liquid chromatography optimization: response surface modeling</title><author>Metting, Harm J. ; Coenegrach, Pierre M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b502a5fb6717ec9ddaa29dd652709767ecc1bb401396414a252da29b13866db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Mathematics</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Optimization</topic><topic>Response surface modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metting, Harm J.</creatorcontrib><creatorcontrib>Coenegrach, Pierre M.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metting, Harm J.</au><au>Coenegrach, Pierre M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural networks in high-performance liquid chromatography optimization: response surface modeling</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>1996-03-29</date><risdate>1996</risdate><volume>728</volume><issue>1</issue><spage>47</spage><epage>53</epage><pages>47-53</pages><issn>0021-9673</issn><abstract>The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>8673238</pmid><doi>10.1016/0021-9673(96)82447-2</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9673 |
ispartof | Journal of Chromatography A, 1996-03, Vol.728 (1), p.47-53 |
issn | 0021-9673 |
language | eng |
recordid | cdi_proquest_miscellaneous_78021632 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Chromatography, High Pressure Liquid - methods Mathematics Neural networks Neural Networks (Computer) Optimization Response surface modelling |
title | Neural networks in high-performance liquid chromatography optimization: response surface modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20networks%20in%20high-performance%20liquid%20chromatography%20optimization:%20response%20surface%20modeling&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Metting,%20Harm%20J.&rft.date=1996-03-29&rft.volume=728&rft.issue=1&rft.spage=47&rft.epage=53&rft.pages=47-53&rft.issn=0021-9673&rft_id=info:doi/10.1016/0021-9673(96)82447-2&rft_dat=%3Cproquest_cross%3E78021632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78021632&rft_id=info:pmid/8673238&rft_els_id=0021967396824472&rfr_iscdi=true |