Neural networks in high-performance liquid chromatography optimization: response surface modeling

The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 1996-03, Vol.728 (1), p.47-53
Hauptverfasser: Metting, Harm J., Coenegrach, Pierre M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 47
container_title Journal of Chromatography A
container_volume 728
creator Metting, Harm J.
Coenegrach, Pierre M.J.
description The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models.
doi_str_mv 10.1016/0021-9673(96)82447-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78021632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021967396824472</els_id><sourcerecordid>78021632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-b502a5fb6717ec9ddaa29dd652709767ecc1bb401396414a252da29b13866db13</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxT2AoBS-AUiZEAwB20nshAEJVfyTKlhgthz70hqSOLUTUPn0OLTqyHInvXfvTvdD6JTgK4IJu8aYkrhgPLko2GVO05THdA9NdvIhOvL-A2PCMacH6CAPGk3yCZIvMDhZRy3039Z9-si00dIslnEHrrKuka2CqDarwehILZ1tZG8XTnbLdWS73jTmR_bGtjeRA9_Z1kPkB1fJEGqshtq0i2O0X8naw8m2T9H7w_3b7Cmevz4-z-7msUpZ0cdlhqnMqpJxwkEVWktJQ2UZ5bjgLGiKlGWKSVKwlKSSZlSHiZIkOWM6tCk63-ztnF0N4HvRGK-grmULdvCC5wEGC19PUboZVM5676ASnTONdGtBsBhpihGbGLGFIv5oijF2tt0_lA3oXWiLMvi3Gx_Ck18GnPDKQMCnjQPVC23N_wd-AREqh9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78021632</pqid></control><display><type>article</type><title>Neural networks in high-performance liquid chromatography optimization: response surface modeling</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Metting, Harm J. ; Coenegrach, Pierre M.J.</creator><creatorcontrib>Metting, Harm J. ; Coenegrach, Pierre M.J.</creatorcontrib><description>The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models.</description><identifier>ISSN: 0021-9673</identifier><identifier>DOI: 10.1016/0021-9673(96)82447-2</identifier><identifier>PMID: 8673238</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Chromatography, High Pressure Liquid - methods ; Mathematics ; Neural networks ; Neural Networks (Computer) ; Optimization ; Response surface modelling</subject><ispartof>Journal of Chromatography A, 1996-03, Vol.728 (1), p.47-53</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-b502a5fb6717ec9ddaa29dd652709767ecc1bb401396414a252da29b13866db13</citedby><cites>FETCH-LOGICAL-c469t-b502a5fb6717ec9ddaa29dd652709767ecc1bb401396414a252da29b13866db13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9673(96)82447-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8673238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metting, Harm J.</creatorcontrib><creatorcontrib>Coenegrach, Pierre M.J.</creatorcontrib><title>Neural networks in high-performance liquid chromatography optimization: response surface modeling</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models.</description><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Mathematics</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Optimization</subject><subject>Response surface modelling</subject><issn>0021-9673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD9PwzAQxT2AoBS-AUiZEAwB20nshAEJVfyTKlhgthz70hqSOLUTUPn0OLTqyHInvXfvTvdD6JTgK4IJu8aYkrhgPLko2GVO05THdA9NdvIhOvL-A2PCMacH6CAPGk3yCZIvMDhZRy3039Z9-si00dIslnEHrrKuka2CqDarwehILZ1tZG8XTnbLdWS73jTmR_bGtjeRA9_Z1kPkB1fJEGqshtq0i2O0X8naw8m2T9H7w_3b7Cmevz4-z-7msUpZ0cdlhqnMqpJxwkEVWktJQ2UZ5bjgLGiKlGWKSVKwlKSSZlSHiZIkOWM6tCk63-ztnF0N4HvRGK-grmULdvCC5wEGC19PUboZVM5676ASnTONdGtBsBhpihGbGLGFIv5oijF2tt0_lA3oXWiLMvi3Gx_Ck18GnPDKQMCnjQPVC23N_wd-AREqh9s</recordid><startdate>19960329</startdate><enddate>19960329</enddate><creator>Metting, Harm J.</creator><creator>Coenegrach, Pierre M.J.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19960329</creationdate><title>Neural networks in high-performance liquid chromatography optimization: response surface modeling</title><author>Metting, Harm J. ; Coenegrach, Pierre M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-b502a5fb6717ec9ddaa29dd652709767ecc1bb401396414a252da29b13866db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Mathematics</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Optimization</topic><topic>Response surface modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metting, Harm J.</creatorcontrib><creatorcontrib>Coenegrach, Pierre M.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metting, Harm J.</au><au>Coenegrach, Pierre M.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural networks in high-performance liquid chromatography optimization: response surface modeling</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>1996-03-29</date><risdate>1996</risdate><volume>728</volume><issue>1</issue><spage>47</spage><epage>53</epage><pages>47-53</pages><issn>0021-9673</issn><abstract>The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>8673238</pmid><doi>10.1016/0021-9673(96)82447-2</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9673
ispartof Journal of Chromatography A, 1996-03, Vol.728 (1), p.47-53
issn 0021-9673
language eng
recordid cdi_proquest_miscellaneous_78021632
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Chromatography, High Pressure Liquid - methods
Mathematics
Neural networks
Neural Networks (Computer)
Optimization
Response surface modelling
title Neural networks in high-performance liquid chromatography optimization: response surface modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20networks%20in%20high-performance%20liquid%20chromatography%20optimization:%20response%20surface%20modeling&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Metting,%20Harm%20J.&rft.date=1996-03-29&rft.volume=728&rft.issue=1&rft.spage=47&rft.epage=53&rft.pages=47-53&rft.issn=0021-9673&rft_id=info:doi/10.1016/0021-9673(96)82447-2&rft_dat=%3Cproquest_cross%3E78021632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78021632&rft_id=info:pmid/8673238&rft_els_id=0021967396824472&rfr_iscdi=true