Thermal stability of myosin rod from various species

The radius of gyration and fraction helix as a function of temperature have been determined for myosin rod from four different species: rabbit, frog, scallop, and antarctic fish. Measurements from sodium dodecyl sulfate gel electrophoresis indicate that all particles have the same molecular weight (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1987-12, Vol.26 (26), p.8703-8708
Hauptverfasser: Rodgers, M. E, Karr, T, Biedermann, K, Ueno, H, Harrington, W. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8708
container_issue 26
container_start_page 8703
container_title Biochemistry (Easton)
container_volume 26
creator Rodgers, M. E
Karr, T
Biedermann, K
Ueno, H
Harrington, W. F
description The radius of gyration and fraction helix as a function of temperature have been determined for myosin rod from four different species: rabbit, frog, scallop, and antarctic fish. Measurements from sodium dodecyl sulfate gel electrophoresis indicate that all particles have the same molecular weight (approximately 130K). All fragments are nearly 100% alpha-helical at low temperatures (0-5 degrees C). The melting profiles for each are qualitatively similar in shape, but their midpoints are shifted along the temperature axis in the following order: antarctic fish (Tm = 33 degrees C), scallop (Tm = 39 degrees C), frog (Tm = 45 degrees C), and rabbit (Tm = 49 degrees C). Corresponding radius of gyration vs temperature profiles for each species are shifted to lower temperatures (approximately 5-8 degrees C) with respect to the optical rotation melting curves. From plots of radius of gyration vs fraction helix, we find a marked drop in the radius of gyration (from 43 to approximately 34 nm) with less than a 5% decrease in fraction helix for rabbit, frog, and antarctic fish rods, whereas the radius of gyration of scallop rod never exceeds 34 nm. Results indicate hinging of the myosin rod of each species. The thermal stabilities of the myosin rods shift in parallel with the working temperature of their respective muscles.
doi_str_mv 10.1021/bi00400a032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_78000465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14950502</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-f6093c3a78bee1927f38d4d7b0eb5ce493135ef5f8dd11b56a6483e8a4d5a90e3</originalsourceid><addsrcrecordid>eNqF0E1rFEEQBuBGEuIac8o5MIeghzBaPf191KAxEIgmm4uXpmamGjvO7KzdsyH7751ll8WDkFMd3oei6mXslMMHDhX_WEcACYAgqldsxlUFpXROHbAZAOiychpeszc5P8LGGXnEjoSCCoyZMTn_RanHrsgj1rGL47oYQtGvhxwXRRraIqShL54wxWGVi7ykJlJ-yw4DdplOdvOYPXz9Mr_8Vt7cXl1ffropUVoYy6DBiUagsTURd5UJwrayNTVQrRqSTnChKKhg25bzWmnU0gqyKFuFDkgcs3fbvcs0_FlRHn0fc0NdhwuazvHGbj7S6kXIpVMwvTzBiy1s0pBzouCXKfaY1p6D35Tp_ylz0me7tau6p3Zvd-1N-fkux9xgFxIumpj3zNiq0lJPrNyymEd63seYfntthFF-_v3e6x_u7ie3nz2f_Putxyb7x2GVFlPJ_z3wL9mxldQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14950502</pqid></control><display><type>article</type><title>Thermal stability of myosin rod from various species</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rodgers, M. E ; Karr, T ; Biedermann, K ; Ueno, H ; Harrington, W. F</creator><creatorcontrib>Rodgers, M. E ; Karr, T ; Biedermann, K ; Ueno, H ; Harrington, W. F</creatorcontrib><description>The radius of gyration and fraction helix as a function of temperature have been determined for myosin rod from four different species: rabbit, frog, scallop, and antarctic fish. Measurements from sodium dodecyl sulfate gel electrophoresis indicate that all particles have the same molecular weight (approximately 130K). All fragments are nearly 100% alpha-helical at low temperatures (0-5 degrees C). The melting profiles for each are qualitatively similar in shape, but their midpoints are shifted along the temperature axis in the following order: antarctic fish (Tm = 33 degrees C), scallop (Tm = 39 degrees C), frog (Tm = 45 degrees C), and rabbit (Tm = 49 degrees C). Corresponding radius of gyration vs temperature profiles for each species are shifted to lower temperatures (approximately 5-8 degrees C) with respect to the optical rotation melting curves. From plots of radius of gyration vs fraction helix, we find a marked drop in the radius of gyration (from 43 to approximately 34 nm) with less than a 5% decrease in fraction helix for rabbit, frog, and antarctic fish rods, whereas the radius of gyration of scallop rod never exceeds 34 nm. Results indicate hinging of the myosin rod of each species. The thermal stabilities of the myosin rods shift in parallel with the working temperature of their respective muscles.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi00400a032</identifier><identifier>PMID: 3502077</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical, structural and metabolic biochemistry ; Animals ; Biological and medical sciences ; Contractile proteins ; Drug Stability ; Fishes ; Fundamental and applied biological sciences. Psychology ; Holoproteins ; Mollusca ; myosin ; Myosins - metabolism ; Optical Rotation ; Protein Conformation ; Protein Denaturation ; Proteins ; Rabbits ; Rana temporaria ; Species Specificity ; thermal stability ; Thermodynamics</subject><ispartof>Biochemistry (Easton), 1987-12, Vol.26 (26), p.8703-8708</ispartof><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-f6093c3a78bee1927f38d4d7b0eb5ce493135ef5f8dd11b56a6483e8a4d5a90e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi00400a032$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi00400a032$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7822646$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3502077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodgers, M. E</creatorcontrib><creatorcontrib>Karr, T</creatorcontrib><creatorcontrib>Biedermann, K</creatorcontrib><creatorcontrib>Ueno, H</creatorcontrib><creatorcontrib>Harrington, W. F</creatorcontrib><title>Thermal stability of myosin rod from various species</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The radius of gyration and fraction helix as a function of temperature have been determined for myosin rod from four different species: rabbit, frog, scallop, and antarctic fish. Measurements from sodium dodecyl sulfate gel electrophoresis indicate that all particles have the same molecular weight (approximately 130K). All fragments are nearly 100% alpha-helical at low temperatures (0-5 degrees C). The melting profiles for each are qualitatively similar in shape, but their midpoints are shifted along the temperature axis in the following order: antarctic fish (Tm = 33 degrees C), scallop (Tm = 39 degrees C), frog (Tm = 45 degrees C), and rabbit (Tm = 49 degrees C). Corresponding radius of gyration vs temperature profiles for each species are shifted to lower temperatures (approximately 5-8 degrees C) with respect to the optical rotation melting curves. From plots of radius of gyration vs fraction helix, we find a marked drop in the radius of gyration (from 43 to approximately 34 nm) with less than a 5% decrease in fraction helix for rabbit, frog, and antarctic fish rods, whereas the radius of gyration of scallop rod never exceeds 34 nm. Results indicate hinging of the myosin rod of each species. The thermal stabilities of the myosin rods shift in parallel with the working temperature of their respective muscles.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Contractile proteins</subject><subject>Drug Stability</subject><subject>Fishes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Holoproteins</subject><subject>Mollusca</subject><subject>myosin</subject><subject>Myosins - metabolism</subject><subject>Optical Rotation</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>Proteins</subject><subject>Rabbits</subject><subject>Rana temporaria</subject><subject>Species Specificity</subject><subject>thermal stability</subject><subject>Thermodynamics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1rFEEQBuBGEuIac8o5MIeghzBaPf191KAxEIgmm4uXpmamGjvO7KzdsyH7751ll8WDkFMd3oei6mXslMMHDhX_WEcACYAgqldsxlUFpXROHbAZAOiychpeszc5P8LGGXnEjoSCCoyZMTn_RanHrsgj1rGL47oYQtGvhxwXRRraIqShL54wxWGVi7ykJlJ-yw4DdplOdvOYPXz9Mr_8Vt7cXl1ffropUVoYy6DBiUagsTURd5UJwrayNTVQrRqSTnChKKhg25bzWmnU0gqyKFuFDkgcs3fbvcs0_FlRHn0fc0NdhwuazvHGbj7S6kXIpVMwvTzBiy1s0pBzouCXKfaY1p6D35Tp_ylz0me7tau6p3Zvd-1N-fkux9xgFxIumpj3zNiq0lJPrNyymEd63seYfntthFF-_v3e6x_u7ie3nz2f_Putxyb7x2GVFlPJ_z3wL9mxldQ</recordid><startdate>19871201</startdate><enddate>19871201</enddate><creator>Rodgers, M. E</creator><creator>Karr, T</creator><creator>Biedermann, K</creator><creator>Ueno, H</creator><creator>Harrington, W. F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19871201</creationdate><title>Thermal stability of myosin rod from various species</title><author>Rodgers, M. E ; Karr, T ; Biedermann, K ; Ueno, H ; Harrington, W. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-f6093c3a78bee1927f38d4d7b0eb5ce493135ef5f8dd11b56a6483e8a4d5a90e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Contractile proteins</topic><topic>Drug Stability</topic><topic>Fishes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Holoproteins</topic><topic>Mollusca</topic><topic>myosin</topic><topic>Myosins - metabolism</topic><topic>Optical Rotation</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>Proteins</topic><topic>Rabbits</topic><topic>Rana temporaria</topic><topic>Species Specificity</topic><topic>thermal stability</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodgers, M. E</creatorcontrib><creatorcontrib>Karr, T</creatorcontrib><creatorcontrib>Biedermann, K</creatorcontrib><creatorcontrib>Ueno, H</creatorcontrib><creatorcontrib>Harrington, W. F</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodgers, M. E</au><au>Karr, T</au><au>Biedermann, K</au><au>Ueno, H</au><au>Harrington, W. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal stability of myosin rod from various species</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1987-12-01</date><risdate>1987</risdate><volume>26</volume><issue>26</issue><spage>8703</spage><epage>8708</epage><pages>8703-8708</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The radius of gyration and fraction helix as a function of temperature have been determined for myosin rod from four different species: rabbit, frog, scallop, and antarctic fish. Measurements from sodium dodecyl sulfate gel electrophoresis indicate that all particles have the same molecular weight (approximately 130K). All fragments are nearly 100% alpha-helical at low temperatures (0-5 degrees C). The melting profiles for each are qualitatively similar in shape, but their midpoints are shifted along the temperature axis in the following order: antarctic fish (Tm = 33 degrees C), scallop (Tm = 39 degrees C), frog (Tm = 45 degrees C), and rabbit (Tm = 49 degrees C). Corresponding radius of gyration vs temperature profiles for each species are shifted to lower temperatures (approximately 5-8 degrees C) with respect to the optical rotation melting curves. From plots of radius of gyration vs fraction helix, we find a marked drop in the radius of gyration (from 43 to approximately 34 nm) with less than a 5% decrease in fraction helix for rabbit, frog, and antarctic fish rods, whereas the radius of gyration of scallop rod never exceeds 34 nm. Results indicate hinging of the myosin rod of each species. The thermal stabilities of the myosin rods shift in parallel with the working temperature of their respective muscles.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>3502077</pmid><doi>10.1021/bi00400a032</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1987-12, Vol.26 (26), p.8703-8708
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_78000465
source MEDLINE; American Chemical Society Journals
subjects Analytical, structural and metabolic biochemistry
Animals
Biological and medical sciences
Contractile proteins
Drug Stability
Fishes
Fundamental and applied biological sciences. Psychology
Holoproteins
Mollusca
myosin
Myosins - metabolism
Optical Rotation
Protein Conformation
Protein Denaturation
Proteins
Rabbits
Rana temporaria
Species Specificity
thermal stability
Thermodynamics
title Thermal stability of myosin rod from various species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20stability%20of%20myosin%20rod%20from%20various%20species&rft.jtitle=Biochemistry%20(Easton)&rft.au=Rodgers,%20M.%20E&rft.date=1987-12-01&rft.volume=26&rft.issue=26&rft.spage=8703&rft.epage=8708&rft.pages=8703-8708&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi00400a032&rft_dat=%3Cproquest_cross%3E14950502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14950502&rft_id=info:pmid/3502077&rfr_iscdi=true