Left-right asymmetry in the buildup of echo suppression in normal-hearing adults

Echo threshold is that critical delay of a logging signal (the echo) at which the echo is "suppressed"--i.e., at which one rather than two events is perceived. It has recently been shown that echo threshold increases in most subjects when they are exposed to a train of redundant informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1996-02, Vol.99 (2), p.1118-1123
1. Verfasser: Grantham, D W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1123
container_issue 2
container_start_page 1118
container_title The Journal of the Acoustical Society of America
container_volume 99
creator Grantham, D W
description Echo threshold is that critical delay of a logging signal (the echo) at which the echo is "suppressed"--i.e., at which one rather than two events is perceived. It has recently been shown that echo threshold increases in most subjects when they are exposed to a train of redundant information prior to the test stimulus presentation--that is, there is buildup of echo suppression in the presence of the preceding train [Clifton et al., J. Acoust. Soc. Am. 95, 1525-1533 (1994)]. The present investigation measured echo threshold in 25 normal-hearing adult subjects, both for isolated (baseline) test stimuli and for test stimuli preceded by a redundant train of stimuli (buildup conditions). The test stimulus was a 4-microsecond wideband noise burst pair, in which the lead burst was presented from either the left or right side (from near -45 degrees or or near (+)45 degrees in different runs), and the lag burst was presented from the opposite side. Echo delay was varied adaptively, and the subject's task was to indicate on each trial which of two alternative positions (separated by 20 degrees) the lag sources was presented from. Average echo threshold in the baseline condition was 11.2 microseconds (in agreement with previous results) and did not depend on whether the lead burst was on the subject's left or right side. Average echo threshold in the buildup conditions was significantly elevated. Interestingly, there was a significantly greater buildup effect when the lead stimulus came from the subject's right side (average echo threshold: 24.4 microseconds) than when it came from the left side (average: 18.8 microseconds). This result agrees with informal observations made by Clifton and Freyman [Percept. Psychophys. 46, 139-145 (1989)] and suggests that there is more effective suppression of echo information when the lead stimulus originates from the right side (i.e., the side contralateral to the typically dominant hemisphere) that when it originates from the left side. The distribution of the magnitude of buildup effects across subjects (i.e., echo threshold in the presence of the train minus baseline echo threshold) was unimodal and symmetric, both for lag source on left (mean: 14.1 microseconds) and for lag source on right (mean: 6.7 microseconds). These results are discussed in relation to other hearing asymmetries that have been reported.
doi_str_mv 10.1121/1.414596
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77994337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77994337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-5512c7758c8882357ca7065c9d503c9ccb4f829e0e5991d8918f12f7d20775cc3</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMotVbBPyBkJW5S8yWTSbKU4gsGdKHrkGYynZF5mUwW_fdOaXF1uXDuXRyEboGuARg8wjqDTOj8DC1BMEqUYNk5WlJKgWQ6zy_RVYw_cxWK6wVaqJxqpsUSfRa-mkhodvWEbdx3nZ_CHjc9nmqPt6lpyzTiocLe1QOOaRyDj7EZ-gPSD6GzLam9DU2_w7ZM7RSv0UVl2-hvTrlC3y_PX5s3Uny8vm-eCuI4sIkIAcxJKZRTSjEupLOS5sLpUlDutHPbrFJMe-qF1lAqDaoCVsmS0XnlHF-h--PvGIbf5ONkuiY637a290OKRkqtM87lDD4cQReGGIOvzBiazoa9AWoO8gyYo7wZvTt9pm3ny3_wZIv_Abe4aIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77994337</pqid></control><display><type>article</type><title>Left-right asymmetry in the buildup of echo suppression in normal-hearing adults</title><source>MEDLINE</source><source>AIP Acoustical Society of America</source><creator>Grantham, D W</creator><creatorcontrib>Grantham, D W</creatorcontrib><description>Echo threshold is that critical delay of a logging signal (the echo) at which the echo is "suppressed"--i.e., at which one rather than two events is perceived. It has recently been shown that echo threshold increases in most subjects when they are exposed to a train of redundant information prior to the test stimulus presentation--that is, there is buildup of echo suppression in the presence of the preceding train [Clifton et al., J. Acoust. Soc. Am. 95, 1525-1533 (1994)]. The present investigation measured echo threshold in 25 normal-hearing adult subjects, both for isolated (baseline) test stimuli and for test stimuli preceded by a redundant train of stimuli (buildup conditions). The test stimulus was a 4-microsecond wideband noise burst pair, in which the lead burst was presented from either the left or right side (from near -45 degrees or or near (+)45 degrees in different runs), and the lag burst was presented from the opposite side. Echo delay was varied adaptively, and the subject's task was to indicate on each trial which of two alternative positions (separated by 20 degrees) the lag sources was presented from. Average echo threshold in the baseline condition was 11.2 microseconds (in agreement with previous results) and did not depend on whether the lead burst was on the subject's left or right side. Average echo threshold in the buildup conditions was significantly elevated. Interestingly, there was a significantly greater buildup effect when the lead stimulus came from the subject's right side (average echo threshold: 24.4 microseconds) than when it came from the left side (average: 18.8 microseconds). This result agrees with informal observations made by Clifton and Freyman [Percept. Psychophys. 46, 139-145 (1989)] and suggests that there is more effective suppression of echo information when the lead stimulus originates from the right side (i.e., the side contralateral to the typically dominant hemisphere) that when it originates from the left side. The distribution of the magnitude of buildup effects across subjects (i.e., echo threshold in the presence of the train minus baseline echo threshold) was unimodal and symmetric, both for lag source on left (mean: 14.1 microseconds) and for lag source on right (mean: 6.7 microseconds). These results are discussed in relation to other hearing asymmetries that have been reported.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.414596</identifier><identifier>PMID: 8609295</identifier><language>eng</language><publisher>United States</publisher><subject>Adolescent ; Adult ; Auditory Threshold ; Female ; Functional Laterality ; Hearing ; Humans ; Male</subject><ispartof>The Journal of the Acoustical Society of America, 1996-02, Vol.99 (2), p.1118-1123</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-5512c7758c8882357ca7065c9d503c9ccb4f829e0e5991d8918f12f7d20775cc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8609295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grantham, D W</creatorcontrib><title>Left-right asymmetry in the buildup of echo suppression in normal-hearing adults</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Echo threshold is that critical delay of a logging signal (the echo) at which the echo is "suppressed"--i.e., at which one rather than two events is perceived. It has recently been shown that echo threshold increases in most subjects when they are exposed to a train of redundant information prior to the test stimulus presentation--that is, there is buildup of echo suppression in the presence of the preceding train [Clifton et al., J. Acoust. Soc. Am. 95, 1525-1533 (1994)]. The present investigation measured echo threshold in 25 normal-hearing adult subjects, both for isolated (baseline) test stimuli and for test stimuli preceded by a redundant train of stimuli (buildup conditions). The test stimulus was a 4-microsecond wideband noise burst pair, in which the lead burst was presented from either the left or right side (from near -45 degrees or or near (+)45 degrees in different runs), and the lag burst was presented from the opposite side. Echo delay was varied adaptively, and the subject's task was to indicate on each trial which of two alternative positions (separated by 20 degrees) the lag sources was presented from. Average echo threshold in the baseline condition was 11.2 microseconds (in agreement with previous results) and did not depend on whether the lead burst was on the subject's left or right side. Average echo threshold in the buildup conditions was significantly elevated. Interestingly, there was a significantly greater buildup effect when the lead stimulus came from the subject's right side (average echo threshold: 24.4 microseconds) than when it came from the left side (average: 18.8 microseconds). This result agrees with informal observations made by Clifton and Freyman [Percept. Psychophys. 46, 139-145 (1989)] and suggests that there is more effective suppression of echo information when the lead stimulus originates from the right side (i.e., the side contralateral to the typically dominant hemisphere) that when it originates from the left side. The distribution of the magnitude of buildup effects across subjects (i.e., echo threshold in the presence of the train minus baseline echo threshold) was unimodal and symmetric, both for lag source on left (mean: 14.1 microseconds) and for lag source on right (mean: 6.7 microseconds). These results are discussed in relation to other hearing asymmetries that have been reported.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Auditory Threshold</subject><subject>Female</subject><subject>Functional Laterality</subject><subject>Hearing</subject><subject>Humans</subject><subject>Male</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLAzEYRYMotVbBPyBkJW5S8yWTSbKU4gsGdKHrkGYynZF5mUwW_fdOaXF1uXDuXRyEboGuARg8wjqDTOj8DC1BMEqUYNk5WlJKgWQ6zy_RVYw_cxWK6wVaqJxqpsUSfRa-mkhodvWEbdx3nZ_CHjc9nmqPt6lpyzTiocLe1QOOaRyDj7EZ-gPSD6GzLam9DU2_w7ZM7RSv0UVl2-hvTrlC3y_PX5s3Uny8vm-eCuI4sIkIAcxJKZRTSjEupLOS5sLpUlDutHPbrFJMe-qF1lAqDaoCVsmS0XnlHF-h--PvGIbf5ONkuiY637a290OKRkqtM87lDD4cQReGGIOvzBiazoa9AWoO8gyYo7wZvTt9pm3ny3_wZIv_Abe4aIU</recordid><startdate>199602</startdate><enddate>199602</enddate><creator>Grantham, D W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope></search><sort><creationdate>199602</creationdate><title>Left-right asymmetry in the buildup of echo suppression in normal-hearing adults</title><author>Grantham, D W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-5512c7758c8882357ca7065c9d503c9ccb4f829e0e5991d8918f12f7d20775cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Auditory Threshold</topic><topic>Female</topic><topic>Functional Laterality</topic><topic>Hearing</topic><topic>Humans</topic><topic>Male</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grantham, D W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grantham, D W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Left-right asymmetry in the buildup of echo suppression in normal-hearing adults</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>1996-02</date><risdate>1996</risdate><volume>99</volume><issue>2</issue><spage>1118</spage><epage>1123</epage><pages>1118-1123</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Echo threshold is that critical delay of a logging signal (the echo) at which the echo is "suppressed"--i.e., at which one rather than two events is perceived. It has recently been shown that echo threshold increases in most subjects when they are exposed to a train of redundant information prior to the test stimulus presentation--that is, there is buildup of echo suppression in the presence of the preceding train [Clifton et al., J. Acoust. Soc. Am. 95, 1525-1533 (1994)]. The present investigation measured echo threshold in 25 normal-hearing adult subjects, both for isolated (baseline) test stimuli and for test stimuli preceded by a redundant train of stimuli (buildup conditions). The test stimulus was a 4-microsecond wideband noise burst pair, in which the lead burst was presented from either the left or right side (from near -45 degrees or or near (+)45 degrees in different runs), and the lag burst was presented from the opposite side. Echo delay was varied adaptively, and the subject's task was to indicate on each trial which of two alternative positions (separated by 20 degrees) the lag sources was presented from. Average echo threshold in the baseline condition was 11.2 microseconds (in agreement with previous results) and did not depend on whether the lead burst was on the subject's left or right side. Average echo threshold in the buildup conditions was significantly elevated. Interestingly, there was a significantly greater buildup effect when the lead stimulus came from the subject's right side (average echo threshold: 24.4 microseconds) than when it came from the left side (average: 18.8 microseconds). This result agrees with informal observations made by Clifton and Freyman [Percept. Psychophys. 46, 139-145 (1989)] and suggests that there is more effective suppression of echo information when the lead stimulus originates from the right side (i.e., the side contralateral to the typically dominant hemisphere) that when it originates from the left side. The distribution of the magnitude of buildup effects across subjects (i.e., echo threshold in the presence of the train minus baseline echo threshold) was unimodal and symmetric, both for lag source on left (mean: 14.1 microseconds) and for lag source on right (mean: 6.7 microseconds). These results are discussed in relation to other hearing asymmetries that have been reported.</abstract><cop>United States</cop><pmid>8609295</pmid><doi>10.1121/1.414596</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1996-02, Vol.99 (2), p.1118-1123
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_77994337
source MEDLINE; AIP Acoustical Society of America
subjects Adolescent
Adult
Auditory Threshold
Female
Functional Laterality
Hearing
Humans
Male
title Left-right asymmetry in the buildup of echo suppression in normal-hearing adults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Left-right%20asymmetry%20in%20the%20buildup%20of%20echo%20suppression%20in%20normal-hearing%20adults&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Grantham,%20D%20W&rft.date=1996-02&rft.volume=99&rft.issue=2&rft.spage=1118&rft.epage=1123&rft.pages=1118-1123&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.414596&rft_dat=%3Cproquest_cross%3E77994337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77994337&rft_id=info:pmid/8609295&rfr_iscdi=true