Mathematical model and simulation of retina and tectum opticum of lower vertebrates
The processing of information within the retino-tectal visual system of amphibians is decomposed into five major operational stages, three of them taking place in the retina and two in the optic tectum. The stages in the retina involve (i) a spatially local high-pass filtering in connection to the p...
Gespeichert in:
Veröffentlicht in: | Acta biotheoretica 1987-01, Vol.36 (3), p.179-212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The processing of information within the retino-tectal visual system of amphibians is decomposed into five major operational stages, three of them taking place in the retina and two in the optic tectum. The stages in the retina involve (i) a spatially local high-pass filtering in connection to the perception of moving objects, (ii) separation of the receptor activity into ON- and OFF-channels regarding the distinction of objects on both light and dark backgrounds, (iii) spatial integration via near excitation and far-reaching inhibition. Variation of the spatial range of excitation and inhibition allows to account for typical activities observed in a variety of classes of retina ganglion cells. Mathematical description of the operations in the tectum opticum include (i) spatial summation of retinal output (mainly of class-2 and class-3 retina ganglion cells), and (ii) direct or indirect lateral inhibition between tectal cells. In the computer simulation, first the output of the mathematical retina model is computed which, then, is used as the input to the tectum model. The full spatio-temporal dynamics is taken into account. The simulations show that different combinations of strength of lateral inhibition on the one side and the response properties of the retina ganglion cells on the other side determine the response properties of tectal cell types involved in object recognition. |
---|---|
ISSN: | 0001-5342 1572-8358 |
DOI: | 10.1007/BF00052064 |