Distribution of a neutral cardioplegic vehicle during the development of ischemic myocardial contracture

During prolonged ischemic cardiac arrest successful myocardial protection depends upon uniform delivery of cardioplegic solutions to all regions of the heart. Accordingly, we studied the regional and transmural distribution of a neutral crystalloid (dextran-saline) solution during normothermic (37°C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 1987-10, Vol.19 (10), p.977-989
Hauptverfasser: Zile, Michael R., Neill, William A., Gaasch, William H., Oxendine, John, Apstein, Carl S., Weinberg, Ellen, Bing, Oscar H.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 10
container_start_page 977
container_title Journal of molecular and cellular cardiology
container_volume 19
creator Zile, Michael R.
Neill, William A.
Gaasch, William H.
Oxendine, John
Apstein, Carl S.
Weinberg, Ellen
Bing, Oscar H.L.
description During prolonged ischemic cardiac arrest successful myocardial protection depends upon uniform delivery of cardioplegic solutions to all regions of the heart. Accordingly, we studied the regional and transmural distribution of a neutral crystalloid (dextran-saline) solution during normothermic (37°C) ischemia in 18 isolated blood-perfused dog hearts (isovolumic left ventricle). In the baseline state, coronary perfusion pressure was 100 mmHg. At the onset of ischemia and every 15 min throughout ischemia, we infused 100 ml of crystalloid solution (37°C) at a perfusion pressure of 100 mmHg and the distribution of crystalloid solution was assessed (radioactive microsphere technique). The hearts were reperfused after 60 min ( n=9) or 90 mins ( n=9) of ischemia. In the baseline pre-arrest state the left ventricle (LV) received 67±1.0% of the total coronary blood flow; the LV subendocardial to subepicardial flow ratio was 1.33±0.18, the LV end diastolic pressure was 7.5±0.4 mmHg, and mean trasmural myocardial adenosine triphosphate (ATP) was 16.4±1.1 μ m/g DW. At the onset and throughout the first 45 mins of ischemia ( n=9), regional and transmural distribution of the crystalloid solution was similar to that of coronary blood flow during the baseline state; there was no change in LV end diastolic pressure, but there was a moderate fall in ATP content (7.26±1.6 μm/g DW). After 75 mins of ischemia ( n=9), despite the development of ischemic contracture (LV end diastolic pressure exceeded 20 mmHg in all 9 hearts) and marked ATP depletion (2.76±0.5 μ m/ g DW), there was an increase in crystalloid solution delivery to the LV as a whole and the subendocardium in particular (the LV received 82±2.0% and the subendocardial to subepicardial flow ratio was 1.75±0.1). Even in a subgroup with severe contracture during ischemic arrest (LV end diastolic pressure >60 mmHg, n=4) there was no reduction in crystalloid solution delivery. Thus, the presence of ischemic contracture does not preclude delivery of crystalloid solution to the LV subendocardium.
doi_str_mv 10.1016/S0022-2828(87)80570-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77956968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022282887805709</els_id><sourcerecordid>77956968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-e0ffefaad20f33c241976643d65c46c423faad5ebb26db0c89bbbc36badf23733</originalsourceid><addsrcrecordid>eNqFkM1q3DAUhUVpSadpHyHgRSntwo0sWbK0KiH9hUAWaddCP1cZFduaSvJA3j7yzDDbrnThfufo8iF01eHPHe749QPGhLREEPFRDJ8EZgNu5Qu06bBkrWCif4k2Z-Q1epPzX4yx7Cm9QBek7yWjZIO2X0MuKZilhDg30Te6mWEpSY-N1cmFuBvhMdhmD9tgR2jcksL82JRtHWEPY9xNMJc1GLLdwlTR6SkeomtFnGuVLUuCt-iV12OGd6f3Ev35_u337c_27v7Hr9ubu9ZSIUsL2HvwWjuCPaWW9J0cOO-p48z23PaErksGxhDuDLZCGmMs5UY7T-hA6SX6cOzdpfhvgVzUVC-DcdQzxCWrYZCMSy4qyI6gTTHnBF7tUph0elIdVqthdTCsVn1KDOpgWMmauzp9sJgJ3Dl1Ulr37097na0efdKzDfmMDYywrusq9uWIQZWxD5BUtgFmCy4ksEW5GP5zyDMaIprS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77956968</pqid></control><display><type>article</type><title>Distribution of a neutral cardioplegic vehicle during the development of ischemic myocardial contracture</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zile, Michael R. ; Neill, William A. ; Gaasch, William H. ; Oxendine, John ; Apstein, Carl S. ; Weinberg, Ellen ; Bing, Oscar H.L.</creator><creatorcontrib>Zile, Michael R. ; Neill, William A. ; Gaasch, William H. ; Oxendine, John ; Apstein, Carl S. ; Weinberg, Ellen ; Bing, Oscar H.L.</creatorcontrib><description>During prolonged ischemic cardiac arrest successful myocardial protection depends upon uniform delivery of cardioplegic solutions to all regions of the heart. Accordingly, we studied the regional and transmural distribution of a neutral crystalloid (dextran-saline) solution during normothermic (37°C) ischemia in 18 isolated blood-perfused dog hearts (isovolumic left ventricle). In the baseline state, coronary perfusion pressure was 100 mmHg. At the onset of ischemia and every 15 min throughout ischemia, we infused 100 ml of crystalloid solution (37°C) at a perfusion pressure of 100 mmHg and the distribution of crystalloid solution was assessed (radioactive microsphere technique). The hearts were reperfused after 60 min ( n=9) or 90 mins ( n=9) of ischemia. In the baseline pre-arrest state the left ventricle (LV) received 67±1.0% of the total coronary blood flow; the LV subendocardial to subepicardial flow ratio was 1.33±0.18, the LV end diastolic pressure was 7.5±0.4 mmHg, and mean trasmural myocardial adenosine triphosphate (ATP) was 16.4±1.1 μ m/g DW. At the onset and throughout the first 45 mins of ischemia ( n=9), regional and transmural distribution of the crystalloid solution was similar to that of coronary blood flow during the baseline state; there was no change in LV end diastolic pressure, but there was a moderate fall in ATP content (7.26±1.6 μm/g DW). After 75 mins of ischemia ( n=9), despite the development of ischemic contracture (LV end diastolic pressure exceeded 20 mmHg in all 9 hearts) and marked ATP depletion (2.76±0.5 μ m/ g DW), there was an increase in crystalloid solution delivery to the LV as a whole and the subendocardium in particular (the LV received 82±2.0% and the subendocardial to subepicardial flow ratio was 1.75±0.1). Even in a subgroup with severe contracture during ischemic arrest (LV end diastolic pressure &gt;60 mmHg, n=4) there was no reduction in crystalloid solution delivery. Thus, the presence of ischemic contracture does not preclude delivery of crystalloid solution to the LV subendocardium.</description><identifier>ISSN: 0022-2828</identifier><identifier>EISSN: 1095-8584</identifier><identifier>DOI: 10.1016/S0022-2828(87)80570-9</identifier><identifier>PMID: 2449532</identifier><identifier>CODEN: JMCDAY</identifier><language>eng</language><publisher>Kent: Elsevier Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Anesthesia ; Anesthesia depending on type of surgery ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Biological and medical sciences ; Blood Pressure ; Cardioplegia ; Coronary blood flow ; Coronary Circulation ; Coronary Disease - physiopathology ; Dextrans ; Dogs ; Energy Metabolism ; Heart - physiology ; Heart - physiopathology ; Heart Arrest - physiopathology ; Heart Ventricles - physiopathology ; In Vitro Techniques ; Ischemic arrest ; Lactates - metabolism ; Medical sciences ; Myocardial Contraction ; Myocardial contracture ; Oxygen Consumption ; Perfusion ; Phosphocreatine - metabolism ; Thoracic and cardiovascular surgery. Cardiopulmonary bypass ; Ventricular Function</subject><ispartof>Journal of molecular and cellular cardiology, 1987-10, Vol.19 (10), p.977-989</ispartof><rights>1987 Academic Press Limited</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-e0ffefaad20f33c241976643d65c46c423faad5ebb26db0c89bbbc36badf23733</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0022-2828(87)80570-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7525111$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2449532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zile, Michael R.</creatorcontrib><creatorcontrib>Neill, William A.</creatorcontrib><creatorcontrib>Gaasch, William H.</creatorcontrib><creatorcontrib>Oxendine, John</creatorcontrib><creatorcontrib>Apstein, Carl S.</creatorcontrib><creatorcontrib>Weinberg, Ellen</creatorcontrib><creatorcontrib>Bing, Oscar H.L.</creatorcontrib><title>Distribution of a neutral cardioplegic vehicle during the development of ischemic myocardial contracture</title><title>Journal of molecular and cellular cardiology</title><addtitle>J Mol Cell Cardiol</addtitle><description>During prolonged ischemic cardiac arrest successful myocardial protection depends upon uniform delivery of cardioplegic solutions to all regions of the heart. Accordingly, we studied the regional and transmural distribution of a neutral crystalloid (dextran-saline) solution during normothermic (37°C) ischemia in 18 isolated blood-perfused dog hearts (isovolumic left ventricle). In the baseline state, coronary perfusion pressure was 100 mmHg. At the onset of ischemia and every 15 min throughout ischemia, we infused 100 ml of crystalloid solution (37°C) at a perfusion pressure of 100 mmHg and the distribution of crystalloid solution was assessed (radioactive microsphere technique). The hearts were reperfused after 60 min ( n=9) or 90 mins ( n=9) of ischemia. In the baseline pre-arrest state the left ventricle (LV) received 67±1.0% of the total coronary blood flow; the LV subendocardial to subepicardial flow ratio was 1.33±0.18, the LV end diastolic pressure was 7.5±0.4 mmHg, and mean trasmural myocardial adenosine triphosphate (ATP) was 16.4±1.1 μ m/g DW. At the onset and throughout the first 45 mins of ischemia ( n=9), regional and transmural distribution of the crystalloid solution was similar to that of coronary blood flow during the baseline state; there was no change in LV end diastolic pressure, but there was a moderate fall in ATP content (7.26±1.6 μm/g DW). After 75 mins of ischemia ( n=9), despite the development of ischemic contracture (LV end diastolic pressure exceeded 20 mmHg in all 9 hearts) and marked ATP depletion (2.76±0.5 μ m/ g DW), there was an increase in crystalloid solution delivery to the LV as a whole and the subendocardium in particular (the LV received 82±2.0% and the subendocardial to subepicardial flow ratio was 1.75±0.1). Even in a subgroup with severe contracture during ischemic arrest (LV end diastolic pressure &gt;60 mmHg, n=4) there was no reduction in crystalloid solution delivery. Thus, the presence of ischemic contracture does not preclude delivery of crystalloid solution to the LV subendocardium.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Anesthesia</subject><subject>Anesthesia depending on type of surgery</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood Pressure</subject><subject>Cardioplegia</subject><subject>Coronary blood flow</subject><subject>Coronary Circulation</subject><subject>Coronary Disease - physiopathology</subject><subject>Dextrans</subject><subject>Dogs</subject><subject>Energy Metabolism</subject><subject>Heart - physiology</subject><subject>Heart - physiopathology</subject><subject>Heart Arrest - physiopathology</subject><subject>Heart Ventricles - physiopathology</subject><subject>In Vitro Techniques</subject><subject>Ischemic arrest</subject><subject>Lactates - metabolism</subject><subject>Medical sciences</subject><subject>Myocardial Contraction</subject><subject>Myocardial contracture</subject><subject>Oxygen Consumption</subject><subject>Perfusion</subject><subject>Phosphocreatine - metabolism</subject><subject>Thoracic and cardiovascular surgery. Cardiopulmonary bypass</subject><subject>Ventricular Function</subject><issn>0022-2828</issn><issn>1095-8584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1q3DAUhUVpSadpHyHgRSntwo0sWbK0KiH9hUAWaddCP1cZFduaSvJA3j7yzDDbrnThfufo8iF01eHPHe749QPGhLREEPFRDJ8EZgNu5Qu06bBkrWCif4k2Z-Q1epPzX4yx7Cm9QBek7yWjZIO2X0MuKZilhDg30Te6mWEpSY-N1cmFuBvhMdhmD9tgR2jcksL82JRtHWEPY9xNMJc1GLLdwlTR6SkeomtFnGuVLUuCt-iV12OGd6f3Ev35_u337c_27v7Hr9ubu9ZSIUsL2HvwWjuCPaWW9J0cOO-p48z23PaErksGxhDuDLZCGmMs5UY7T-hA6SX6cOzdpfhvgVzUVC-DcdQzxCWrYZCMSy4qyI6gTTHnBF7tUph0elIdVqthdTCsVn1KDOpgWMmauzp9sJgJ3Dl1Ulr37097na0efdKzDfmMDYywrusq9uWIQZWxD5BUtgFmCy4ksEW5GP5zyDMaIprS</recordid><startdate>19871001</startdate><enddate>19871001</enddate><creator>Zile, Michael R.</creator><creator>Neill, William A.</creator><creator>Gaasch, William H.</creator><creator>Oxendine, John</creator><creator>Apstein, Carl S.</creator><creator>Weinberg, Ellen</creator><creator>Bing, Oscar H.L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19871001</creationdate><title>Distribution of a neutral cardioplegic vehicle during the development of ischemic myocardial contracture</title><author>Zile, Michael R. ; Neill, William A. ; Gaasch, William H. ; Oxendine, John ; Apstein, Carl S. ; Weinberg, Ellen ; Bing, Oscar H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-e0ffefaad20f33c241976643d65c46c423faad5ebb26db0c89bbbc36badf23733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Anesthesia</topic><topic>Anesthesia depending on type of surgery</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood Pressure</topic><topic>Cardioplegia</topic><topic>Coronary blood flow</topic><topic>Coronary Circulation</topic><topic>Coronary Disease - physiopathology</topic><topic>Dextrans</topic><topic>Dogs</topic><topic>Energy Metabolism</topic><topic>Heart - physiology</topic><topic>Heart - physiopathology</topic><topic>Heart Arrest - physiopathology</topic><topic>Heart Ventricles - physiopathology</topic><topic>In Vitro Techniques</topic><topic>Ischemic arrest</topic><topic>Lactates - metabolism</topic><topic>Medical sciences</topic><topic>Myocardial Contraction</topic><topic>Myocardial contracture</topic><topic>Oxygen Consumption</topic><topic>Perfusion</topic><topic>Phosphocreatine - metabolism</topic><topic>Thoracic and cardiovascular surgery. Cardiopulmonary bypass</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zile, Michael R.</creatorcontrib><creatorcontrib>Neill, William A.</creatorcontrib><creatorcontrib>Gaasch, William H.</creatorcontrib><creatorcontrib>Oxendine, John</creatorcontrib><creatorcontrib>Apstein, Carl S.</creatorcontrib><creatorcontrib>Weinberg, Ellen</creatorcontrib><creatorcontrib>Bing, Oscar H.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular and cellular cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zile, Michael R.</au><au>Neill, William A.</au><au>Gaasch, William H.</au><au>Oxendine, John</au><au>Apstein, Carl S.</au><au>Weinberg, Ellen</au><au>Bing, Oscar H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of a neutral cardioplegic vehicle during the development of ischemic myocardial contracture</atitle><jtitle>Journal of molecular and cellular cardiology</jtitle><addtitle>J Mol Cell Cardiol</addtitle><date>1987-10-01</date><risdate>1987</risdate><volume>19</volume><issue>10</issue><spage>977</spage><epage>989</epage><pages>977-989</pages><issn>0022-2828</issn><eissn>1095-8584</eissn><coden>JMCDAY</coden><abstract>During prolonged ischemic cardiac arrest successful myocardial protection depends upon uniform delivery of cardioplegic solutions to all regions of the heart. Accordingly, we studied the regional and transmural distribution of a neutral crystalloid (dextran-saline) solution during normothermic (37°C) ischemia in 18 isolated blood-perfused dog hearts (isovolumic left ventricle). In the baseline state, coronary perfusion pressure was 100 mmHg. At the onset of ischemia and every 15 min throughout ischemia, we infused 100 ml of crystalloid solution (37°C) at a perfusion pressure of 100 mmHg and the distribution of crystalloid solution was assessed (radioactive microsphere technique). The hearts were reperfused after 60 min ( n=9) or 90 mins ( n=9) of ischemia. In the baseline pre-arrest state the left ventricle (LV) received 67±1.0% of the total coronary blood flow; the LV subendocardial to subepicardial flow ratio was 1.33±0.18, the LV end diastolic pressure was 7.5±0.4 mmHg, and mean trasmural myocardial adenosine triphosphate (ATP) was 16.4±1.1 μ m/g DW. At the onset and throughout the first 45 mins of ischemia ( n=9), regional and transmural distribution of the crystalloid solution was similar to that of coronary blood flow during the baseline state; there was no change in LV end diastolic pressure, but there was a moderate fall in ATP content (7.26±1.6 μm/g DW). After 75 mins of ischemia ( n=9), despite the development of ischemic contracture (LV end diastolic pressure exceeded 20 mmHg in all 9 hearts) and marked ATP depletion (2.76±0.5 μ m/ g DW), there was an increase in crystalloid solution delivery to the LV as a whole and the subendocardium in particular (the LV received 82±2.0% and the subendocardial to subepicardial flow ratio was 1.75±0.1). Even in a subgroup with severe contracture during ischemic arrest (LV end diastolic pressure &gt;60 mmHg, n=4) there was no reduction in crystalloid solution delivery. Thus, the presence of ischemic contracture does not preclude delivery of crystalloid solution to the LV subendocardium.</abstract><cop>Kent</cop><pub>Elsevier Ltd</pub><pmid>2449532</pmid><doi>10.1016/S0022-2828(87)80570-9</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2828
ispartof Journal of molecular and cellular cardiology, 1987-10, Vol.19 (10), p.977-989
issn 0022-2828
1095-8584
language eng
recordid cdi_proquest_miscellaneous_77956968
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adenosine Triphosphate - metabolism
Anesthesia
Anesthesia depending on type of surgery
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Biological and medical sciences
Blood Pressure
Cardioplegia
Coronary blood flow
Coronary Circulation
Coronary Disease - physiopathology
Dextrans
Dogs
Energy Metabolism
Heart - physiology
Heart - physiopathology
Heart Arrest - physiopathology
Heart Ventricles - physiopathology
In Vitro Techniques
Ischemic arrest
Lactates - metabolism
Medical sciences
Myocardial Contraction
Myocardial contracture
Oxygen Consumption
Perfusion
Phosphocreatine - metabolism
Thoracic and cardiovascular surgery. Cardiopulmonary bypass
Ventricular Function
title Distribution of a neutral cardioplegic vehicle during the development of ischemic myocardial contracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20a%20neutral%20cardioplegic%20vehicle%20during%20the%20development%20of%20ischemic%20myocardial%20contracture&rft.jtitle=Journal%20of%20molecular%20and%20cellular%20cardiology&rft.au=Zile,%20Michael%20R.&rft.date=1987-10-01&rft.volume=19&rft.issue=10&rft.spage=977&rft.epage=989&rft.pages=977-989&rft.issn=0022-2828&rft.eissn=1095-8584&rft.coden=JMCDAY&rft_id=info:doi/10.1016/S0022-2828(87)80570-9&rft_dat=%3Cproquest_cross%3E77956968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77956968&rft_id=info:pmid/2449532&rft_els_id=S0022282887805709&rfr_iscdi=true