Atomic and residue hydrophilicity in the context of folded protein structures

Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 1995-12, Vol.23 (4), p.536-547
Hauptverfasser: Kuhn, Leslie A., Swanson, Craig A., Pique, Michael E., Tainer, John A., Getzoff, Elizabeth D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 547
container_issue 4
container_start_page 536
container_title Proteins, structure, function, and bioinformatics
container_volume 23
creator Kuhn, Leslie A.
Swanson, Craig A.
Pique, Michael E.
Tainer, John A.
Getzoff, Elizabeth D.
description Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen‐bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively‐charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side‐chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U‐75875 inhibitor complexes. © 1995 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.340230408
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77894095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77894095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4448-1b9e4efe8e4b5faf4ef0d23f715f42e3b85dfe996b9fa6be73eb7627d5798f633</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EglJY2ZA8saU4sR3bI0JQvkpRBWK0kvisGtKm2I4g_z2pWlVsTGfpvfe780PoLCWjlJDscuWbOKKMZJQwIvfQICVKJCSlbB8NiJQioVzyI3QcwgchJFc0P0SHUjAlmRqgyVVsFq7CxdJgD8GZFvC8M75ZzV3tKhc77JY4zgFXzTLCT8SNxbapDRi8Xg29GqJvq9j28RN0YIs6wOl2DtHb7c3r9V3yNB3fX189JRVjTCZpqYCBBQms5Law_ZuYjFqRcssyoKXkxoJSealskZcgKJQiz4ThQkmbUzpEFxtuf8JXCyHqhQsV1HWxhKYNWgipGFG8N442xso3IXiweuXdovCdTole96fXn9C7_vrA-ZbclgswO_u2sF5XG_3b1dD9Q9Mvs-nrX3ayybrQN7nLFv5T54IKrt-fx1rNOBWPs4l-oL-g-44K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77894095</pqid></control><display><type>article</type><title>Atomic and residue hydrophilicity in the context of folded protein structures</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kuhn, Leslie A. ; Swanson, Craig A. ; Pique, Michael E. ; Tainer, John A. ; Getzoff, Elizabeth D.</creator><creatorcontrib>Kuhn, Leslie A. ; Swanson, Craig A. ; Pique, Michael E. ; Tainer, John A. ; Getzoff, Elizabeth D.</creatorcontrib><description>Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen‐bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively‐charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side‐chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U‐75875 inhibitor complexes. © 1995 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.340230408</identifier><identifier>PMID: 8749849</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acids ; Binding Sites ; Computer Graphics ; Computer Simulation ; Crystallography, X-Ray ; drug and inhibitor design ; hydration ; Hydrogen Bonding ; hydrophobicity ; Models, Molecular ; molecular recognition ; ordered solvent ; Protein Folding ; protein surface analysis ; Proteins - chemistry ; solvation ; Water ; water-protein interactions ; X-ray crystallography</subject><ispartof>Proteins, structure, function, and bioinformatics, 1995-12, Vol.23 (4), p.536-547</ispartof><rights>Copyright © 1995 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4448-1b9e4efe8e4b5faf4ef0d23f715f42e3b85dfe996b9fa6be73eb7627d5798f633</citedby><cites>FETCH-LOGICAL-c4448-1b9e4efe8e4b5faf4ef0d23f715f42e3b85dfe996b9fa6be73eb7627d5798f633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.340230408$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.340230408$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8749849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhn, Leslie A.</creatorcontrib><creatorcontrib>Swanson, Craig A.</creatorcontrib><creatorcontrib>Pique, Michael E.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Getzoff, Elizabeth D.</creatorcontrib><title>Atomic and residue hydrophilicity in the context of folded protein structures</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen‐bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively‐charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side‐chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U‐75875 inhibitor complexes. © 1995 Wiley‐Liss, Inc.</description><subject>Amino Acids</subject><subject>Binding Sites</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Crystallography, X-Ray</subject><subject>drug and inhibitor design</subject><subject>hydration</subject><subject>Hydrogen Bonding</subject><subject>hydrophobicity</subject><subject>Models, Molecular</subject><subject>molecular recognition</subject><subject>ordered solvent</subject><subject>Protein Folding</subject><subject>protein surface analysis</subject><subject>Proteins - chemistry</subject><subject>solvation</subject><subject>Water</subject><subject>water-protein interactions</subject><subject>X-ray crystallography</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1PwzAQxS0EglJY2ZA8saU4sR3bI0JQvkpRBWK0kvisGtKm2I4g_z2pWlVsTGfpvfe780PoLCWjlJDscuWbOKKMZJQwIvfQICVKJCSlbB8NiJQioVzyI3QcwgchJFc0P0SHUjAlmRqgyVVsFq7CxdJgD8GZFvC8M75ZzV3tKhc77JY4zgFXzTLCT8SNxbapDRi8Xg29GqJvq9j28RN0YIs6wOl2DtHb7c3r9V3yNB3fX189JRVjTCZpqYCBBQms5Law_ZuYjFqRcssyoKXkxoJSealskZcgKJQiz4ThQkmbUzpEFxtuf8JXCyHqhQsV1HWxhKYNWgipGFG8N442xso3IXiweuXdovCdTole96fXn9C7_vrA-ZbclgswO_u2sF5XG_3b1dD9Q9Mvs-nrX3ayybrQN7nLFv5T54IKrt-fx1rNOBWPs4l-oL-g-44K</recordid><startdate>199512</startdate><enddate>199512</enddate><creator>Kuhn, Leslie A.</creator><creator>Swanson, Craig A.</creator><creator>Pique, Michael E.</creator><creator>Tainer, John A.</creator><creator>Getzoff, Elizabeth D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199512</creationdate><title>Atomic and residue hydrophilicity in the context of folded protein structures</title><author>Kuhn, Leslie A. ; Swanson, Craig A. ; Pique, Michael E. ; Tainer, John A. ; Getzoff, Elizabeth D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4448-1b9e4efe8e4b5faf4ef0d23f715f42e3b85dfe996b9fa6be73eb7627d5798f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Amino Acids</topic><topic>Binding Sites</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Crystallography, X-Ray</topic><topic>drug and inhibitor design</topic><topic>hydration</topic><topic>Hydrogen Bonding</topic><topic>hydrophobicity</topic><topic>Models, Molecular</topic><topic>molecular recognition</topic><topic>ordered solvent</topic><topic>Protein Folding</topic><topic>protein surface analysis</topic><topic>Proteins - chemistry</topic><topic>solvation</topic><topic>Water</topic><topic>water-protein interactions</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, Leslie A.</creatorcontrib><creatorcontrib>Swanson, Craig A.</creatorcontrib><creatorcontrib>Pique, Michael E.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Getzoff, Elizabeth D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, Leslie A.</au><au>Swanson, Craig A.</au><au>Pique, Michael E.</au><au>Tainer, John A.</au><au>Getzoff, Elizabeth D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic and residue hydrophilicity in the context of folded protein structures</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>1995-12</date><risdate>1995</risdate><volume>23</volume><issue>4</issue><spage>536</spage><epage>547</epage><pages>536-547</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen‐bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively‐charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side‐chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U‐75875 inhibitor complexes. © 1995 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8749849</pmid><doi>10.1002/prot.340230408</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 1995-12, Vol.23 (4), p.536-547
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_77894095
source MEDLINE; Access via Wiley Online Library
subjects Amino Acids
Binding Sites
Computer Graphics
Computer Simulation
Crystallography, X-Ray
drug and inhibitor design
hydration
Hydrogen Bonding
hydrophobicity
Models, Molecular
molecular recognition
ordered solvent
Protein Folding
protein surface analysis
Proteins - chemistry
solvation
Water
water-protein interactions
X-ray crystallography
title Atomic and residue hydrophilicity in the context of folded protein structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20and%20residue%20hydrophilicity%20in%20the%20context%20of%20folded%20protein%20structures&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Kuhn,%20Leslie%20A.&rft.date=1995-12&rft.volume=23&rft.issue=4&rft.spage=536&rft.epage=547&rft.pages=536-547&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.340230408&rft_dat=%3Cproquest_cross%3E77894095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77894095&rft_id=info:pmid/8749849&rfr_iscdi=true