Atomic and residue hydrophilicity in the context of folded protein structures
Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 1995-12, Vol.23 (4), p.536-547 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | 4 |
container_start_page | 536 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 23 |
creator | Kuhn, Leslie A. Swanson, Craig A. Pique, Michael E. Tainer, John A. Getzoff, Elizabeth D. |
description | Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen‐bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively‐charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side‐chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U‐75875 inhibitor complexes. © 1995 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/prot.340230408 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77894095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77894095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4448-1b9e4efe8e4b5faf4ef0d23f715f42e3b85dfe996b9fa6be73eb7627d5798f633</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EglJY2ZA8saU4sR3bI0JQvkpRBWK0kvisGtKm2I4g_z2pWlVsTGfpvfe780PoLCWjlJDscuWbOKKMZJQwIvfQICVKJCSlbB8NiJQioVzyI3QcwgchJFc0P0SHUjAlmRqgyVVsFq7CxdJgD8GZFvC8M75ZzV3tKhc77JY4zgFXzTLCT8SNxbapDRi8Xg29GqJvq9j28RN0YIs6wOl2DtHb7c3r9V3yNB3fX189JRVjTCZpqYCBBQms5Law_ZuYjFqRcssyoKXkxoJSealskZcgKJQiz4ThQkmbUzpEFxtuf8JXCyHqhQsV1HWxhKYNWgipGFG8N442xso3IXiweuXdovCdTole96fXn9C7_vrA-ZbclgswO_u2sF5XG_3b1dD9Q9Mvs-nrX3ayybrQN7nLFv5T54IKrt-fx1rNOBWPs4l-oL-g-44K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77894095</pqid></control><display><type>article</type><title>Atomic and residue hydrophilicity in the context of folded protein structures</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kuhn, Leslie A. ; Swanson, Craig A. ; Pique, Michael E. ; Tainer, John A. ; Getzoff, Elizabeth D.</creator><creatorcontrib>Kuhn, Leslie A. ; Swanson, Craig A. ; Pique, Michael E. ; Tainer, John A. ; Getzoff, Elizabeth D.</creatorcontrib><description>Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen‐bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively‐charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side‐chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U‐75875 inhibitor complexes. © 1995 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.340230408</identifier><identifier>PMID: 8749849</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acids ; Binding Sites ; Computer Graphics ; Computer Simulation ; Crystallography, X-Ray ; drug and inhibitor design ; hydration ; Hydrogen Bonding ; hydrophobicity ; Models, Molecular ; molecular recognition ; ordered solvent ; Protein Folding ; protein surface analysis ; Proteins - chemistry ; solvation ; Water ; water-protein interactions ; X-ray crystallography</subject><ispartof>Proteins, structure, function, and bioinformatics, 1995-12, Vol.23 (4), p.536-547</ispartof><rights>Copyright © 1995 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4448-1b9e4efe8e4b5faf4ef0d23f715f42e3b85dfe996b9fa6be73eb7627d5798f633</citedby><cites>FETCH-LOGICAL-c4448-1b9e4efe8e4b5faf4ef0d23f715f42e3b85dfe996b9fa6be73eb7627d5798f633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.340230408$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.340230408$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8749849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuhn, Leslie A.</creatorcontrib><creatorcontrib>Swanson, Craig A.</creatorcontrib><creatorcontrib>Pique, Michael E.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Getzoff, Elizabeth D.</creatorcontrib><title>Atomic and residue hydrophilicity in the context of folded protein structures</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen‐bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively‐charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side‐chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U‐75875 inhibitor complexes. © 1995 Wiley‐Liss, Inc.</description><subject>Amino Acids</subject><subject>Binding Sites</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Crystallography, X-Ray</subject><subject>drug and inhibitor design</subject><subject>hydration</subject><subject>Hydrogen Bonding</subject><subject>hydrophobicity</subject><subject>Models, Molecular</subject><subject>molecular recognition</subject><subject>ordered solvent</subject><subject>Protein Folding</subject><subject>protein surface analysis</subject><subject>Proteins - chemistry</subject><subject>solvation</subject><subject>Water</subject><subject>water-protein interactions</subject><subject>X-ray crystallography</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1PwzAQxS0EglJY2ZA8saU4sR3bI0JQvkpRBWK0kvisGtKm2I4g_z2pWlVsTGfpvfe780PoLCWjlJDscuWbOKKMZJQwIvfQICVKJCSlbB8NiJQioVzyI3QcwgchJFc0P0SHUjAlmRqgyVVsFq7CxdJgD8GZFvC8M75ZzV3tKhc77JY4zgFXzTLCT8SNxbapDRi8Xg29GqJvq9j28RN0YIs6wOl2DtHb7c3r9V3yNB3fX189JRVjTCZpqYCBBQms5Law_ZuYjFqRcssyoKXkxoJSealskZcgKJQiz4ThQkmbUzpEFxtuf8JXCyHqhQsV1HWxhKYNWgipGFG8N442xso3IXiweuXdovCdTole96fXn9C7_vrA-ZbclgswO_u2sF5XG_3b1dD9Q9Mvs-nrX3ayybrQN7nLFv5T54IKrt-fx1rNOBWPs4l-oL-g-44K</recordid><startdate>199512</startdate><enddate>199512</enddate><creator>Kuhn, Leslie A.</creator><creator>Swanson, Craig A.</creator><creator>Pique, Michael E.</creator><creator>Tainer, John A.</creator><creator>Getzoff, Elizabeth D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199512</creationdate><title>Atomic and residue hydrophilicity in the context of folded protein structures</title><author>Kuhn, Leslie A. ; Swanson, Craig A. ; Pique, Michael E. ; Tainer, John A. ; Getzoff, Elizabeth D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4448-1b9e4efe8e4b5faf4ef0d23f715f42e3b85dfe996b9fa6be73eb7627d5798f633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Amino Acids</topic><topic>Binding Sites</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Crystallography, X-Ray</topic><topic>drug and inhibitor design</topic><topic>hydration</topic><topic>Hydrogen Bonding</topic><topic>hydrophobicity</topic><topic>Models, Molecular</topic><topic>molecular recognition</topic><topic>ordered solvent</topic><topic>Protein Folding</topic><topic>protein surface analysis</topic><topic>Proteins - chemistry</topic><topic>solvation</topic><topic>Water</topic><topic>water-protein interactions</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuhn, Leslie A.</creatorcontrib><creatorcontrib>Swanson, Craig A.</creatorcontrib><creatorcontrib>Pique, Michael E.</creatorcontrib><creatorcontrib>Tainer, John A.</creatorcontrib><creatorcontrib>Getzoff, Elizabeth D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuhn, Leslie A.</au><au>Swanson, Craig A.</au><au>Pique, Michael E.</au><au>Tainer, John A.</au><au>Getzoff, Elizabeth D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic and residue hydrophilicity in the context of folded protein structures</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>1995-12</date><risdate>1995</risdate><volume>23</volume><issue>4</issue><spage>536</spage><epage>547</epage><pages>536-547</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>Water‐protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen‐bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively‐charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side‐chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U‐75875 inhibitor complexes. © 1995 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>8749849</pmid><doi>10.1002/prot.340230408</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 1995-12, Vol.23 (4), p.536-547 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_77894095 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Amino Acids Binding Sites Computer Graphics Computer Simulation Crystallography, X-Ray drug and inhibitor design hydration Hydrogen Bonding hydrophobicity Models, Molecular molecular recognition ordered solvent Protein Folding protein surface analysis Proteins - chemistry solvation Water water-protein interactions X-ray crystallography |
title | Atomic and residue hydrophilicity in the context of folded protein structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A06%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20and%20residue%20hydrophilicity%20in%20the%20context%20of%20folded%20protein%20structures&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Kuhn,%20Leslie%20A.&rft.date=1995-12&rft.volume=23&rft.issue=4&rft.spage=536&rft.epage=547&rft.pages=536-547&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.340230408&rft_dat=%3Cproquest_cross%3E77894095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77894095&rft_id=info:pmid/8749849&rfr_iscdi=true |