Diffusion-weighted imaging in tissues: Theoretical models

Typical diffusion measurements use Stejskal‐Tanner pulsed gradient spin echo sequences to provide information about the average diffusion and displacement profiles of particles in a sample. To derive structural information, a measured displacement profile has to be related by means of a model to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 1995-11, Vol.8 (7), p.289-296
Hauptverfasser: Szafer, A., Zhong, Jianhui, Anderson, Adam W., Gore, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue 7
container_start_page 289
container_title NMR in biomedicine
container_volume 8
creator Szafer, A.
Zhong, Jianhui
Anderson, Adam W.
Gore, John C.
description Typical diffusion measurements use Stejskal‐Tanner pulsed gradient spin echo sequences to provide information about the average diffusion and displacement profiles of particles in a sample. To derive structural information, a measured displacement profile has to be related by means of a model to the physical and geometrical properties of the tissue, such as diffusion coefficients and shapes of semi‐permeable membranes of compartments in the system. The behavior of the NMR signal and the measured ADC are greatly affected by the cellular architecture of a tissue, mainly because cellular membranes are relatively impermeable to water. For long diffusion times, and small signal attenuations, ADC is relatively insensitive to how it is measured. In general, however, ADC values are not readily interpreted unless the measuring conditions are specified in detail. For given measuring conditions, ADC depends on intra‐ and extracellular diffusion coefficients, membrane permeabilities, cell sizes and the cellular volume fraction. If intra‐ and extracellular T2 relaxation rates are different enough, ADC may also depend on the relaxation properties of the system and the echo time. An improved understanding of the precise influence of these factors has been obtained by detailed consideration of theoretical and computer models that can be related to experimental data in simple systems. Further refinements of such models should advance our understanding of water diffusion in tissues.
doi_str_mv 10.1002/nbm.1940080704
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77872793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77872793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4364-f21399772169a114636cfc94e4f5cedad73b3b73e8e98f1697a8288207705edd3</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EglJY2ZAyILYUfzW22YBCAbUgpCJGy03OxZAPiFOV_vcYJSpiYrrhfu_du4fQEcEDgjE9K-fFgCiOscQC8y3UI1ipmHBFt1EPqyGNGZd4D-17_4YDxRndRbtSMEUT0UNq5KxdeleV8Qrc4rWBLHKFWbhyEbkyapz3S_Dn0ewVqhoal5o8KqoMcn-AdqzJPRx2s4-eb65nV7fx5HF8d3UxiVPOEh5bSphSQlCSKEMIT1iS2lRx4HaYQmYyweZsLhhIUNIGSBhJpaRYCDyELGN9dNr6ftTVZ8jS6ML5FPLclFAtvRZCCioUC-CgBdO68r4Gqz_q8Eq91gTrn6506Er_dhUEx53zcl5AtsG7csL-pNsbH_62tSlT5zcYw1IFp4CpFlu5HNb_HNUPl9M_EeJW63wDXxutqd91CCCG-uVhrJ9eJsnoaXavp-wbHBOQQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77872793</pqid></control><display><type>article</type><title>Diffusion-weighted imaging in tissues: Theoretical models</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Szafer, A. ; Zhong, Jianhui ; Anderson, Adam W. ; Gore, John C.</creator><creatorcontrib>Szafer, A. ; Zhong, Jianhui ; Anderson, Adam W. ; Gore, John C.</creatorcontrib><description>Typical diffusion measurements use Stejskal‐Tanner pulsed gradient spin echo sequences to provide information about the average diffusion and displacement profiles of particles in a sample. To derive structural information, a measured displacement profile has to be related by means of a model to the physical and geometrical properties of the tissue, such as diffusion coefficients and shapes of semi‐permeable membranes of compartments in the system. The behavior of the NMR signal and the measured ADC are greatly affected by the cellular architecture of a tissue, mainly because cellular membranes are relatively impermeable to water. For long diffusion times, and small signal attenuations, ADC is relatively insensitive to how it is measured. In general, however, ADC values are not readily interpreted unless the measuring conditions are specified in detail. For given measuring conditions, ADC depends on intra‐ and extracellular diffusion coefficients, membrane permeabilities, cell sizes and the cellular volume fraction. If intra‐ and extracellular T2 relaxation rates are different enough, ADC may also depend on the relaxation properties of the system and the echo time. An improved understanding of the precise influence of these factors has been obtained by detailed consideration of theoretical and computer models that can be related to experimental data in simple systems. Further refinements of such models should advance our understanding of water diffusion in tissues.</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.1940080704</identifier><identifier>PMID: 8739267</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Ltd</publisher><subject>Biological and medical sciences ; Body Water - metabolism ; Diffusion ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Spectroscopy - methods ; Mathematics ; Medical sciences ; Miscellaneous. Technology ; Models, Biological ; Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><ispartof>NMR in biomedicine, 1995-11, Vol.8 (7), p.289-296</ispartof><rights>Copyright © 1995 John Wiley &amp; Sons, Ltd.</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4364-f21399772169a114636cfc94e4f5cedad73b3b73e8e98f1697a8288207705edd3</citedby><cites>FETCH-LOGICAL-c4364-f21399772169a114636cfc94e4f5cedad73b3b73e8e98f1697a8288207705edd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.1940080704$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.1940080704$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3089080$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8739267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szafer, A.</creatorcontrib><creatorcontrib>Zhong, Jianhui</creatorcontrib><creatorcontrib>Anderson, Adam W.</creatorcontrib><creatorcontrib>Gore, John C.</creatorcontrib><title>Diffusion-weighted imaging in tissues: Theoretical models</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>Typical diffusion measurements use Stejskal‐Tanner pulsed gradient spin echo sequences to provide information about the average diffusion and displacement profiles of particles in a sample. To derive structural information, a measured displacement profile has to be related by means of a model to the physical and geometrical properties of the tissue, such as diffusion coefficients and shapes of semi‐permeable membranes of compartments in the system. The behavior of the NMR signal and the measured ADC are greatly affected by the cellular architecture of a tissue, mainly because cellular membranes are relatively impermeable to water. For long diffusion times, and small signal attenuations, ADC is relatively insensitive to how it is measured. In general, however, ADC values are not readily interpreted unless the measuring conditions are specified in detail. For given measuring conditions, ADC depends on intra‐ and extracellular diffusion coefficients, membrane permeabilities, cell sizes and the cellular volume fraction. If intra‐ and extracellular T2 relaxation rates are different enough, ADC may also depend on the relaxation properties of the system and the echo time. An improved understanding of the precise influence of these factors has been obtained by detailed consideration of theoretical and computer models that can be related to experimental data in simple systems. Further refinements of such models should advance our understanding of water diffusion in tissues.</description><subject>Biological and medical sciences</subject><subject>Body Water - metabolism</subject><subject>Diffusion</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Models, Biological</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1PwzAQxS0EglJY2ZAyILYUfzW22YBCAbUgpCJGy03OxZAPiFOV_vcYJSpiYrrhfu_du4fQEcEDgjE9K-fFgCiOscQC8y3UI1ipmHBFt1EPqyGNGZd4D-17_4YDxRndRbtSMEUT0UNq5KxdeleV8Qrc4rWBLHKFWbhyEbkyapz3S_Dn0ewVqhoal5o8KqoMcn-AdqzJPRx2s4-eb65nV7fx5HF8d3UxiVPOEh5bSphSQlCSKEMIT1iS2lRx4HaYQmYyweZsLhhIUNIGSBhJpaRYCDyELGN9dNr6ftTVZ8jS6ML5FPLclFAtvRZCCioUC-CgBdO68r4Gqz_q8Eq91gTrn6506Er_dhUEx53zcl5AtsG7csL-pNsbH_62tSlT5zcYw1IFp4CpFlu5HNb_HNUPl9M_EeJW63wDXxutqd91CCCG-uVhrJ9eJsnoaXavp-wbHBOQQQ</recordid><startdate>199511</startdate><enddate>199511</enddate><creator>Szafer, A.</creator><creator>Zhong, Jianhui</creator><creator>Anderson, Adam W.</creator><creator>Gore, John C.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199511</creationdate><title>Diffusion-weighted imaging in tissues: Theoretical models</title><author>Szafer, A. ; Zhong, Jianhui ; Anderson, Adam W. ; Gore, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4364-f21399772169a114636cfc94e4f5cedad73b3b73e8e98f1697a8288207705edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Biological and medical sciences</topic><topic>Body Water - metabolism</topic><topic>Diffusion</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Models, Biological</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szafer, A.</creatorcontrib><creatorcontrib>Zhong, Jianhui</creatorcontrib><creatorcontrib>Anderson, Adam W.</creatorcontrib><creatorcontrib>Gore, John C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szafer, A.</au><au>Zhong, Jianhui</au><au>Anderson, Adam W.</au><au>Gore, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion-weighted imaging in tissues: Theoretical models</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>1995-11</date><risdate>1995</risdate><volume>8</volume><issue>7</issue><spage>289</spage><epage>296</epage><pages>289-296</pages><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>Typical diffusion measurements use Stejskal‐Tanner pulsed gradient spin echo sequences to provide information about the average diffusion and displacement profiles of particles in a sample. To derive structural information, a measured displacement profile has to be related by means of a model to the physical and geometrical properties of the tissue, such as diffusion coefficients and shapes of semi‐permeable membranes of compartments in the system. The behavior of the NMR signal and the measured ADC are greatly affected by the cellular architecture of a tissue, mainly because cellular membranes are relatively impermeable to water. For long diffusion times, and small signal attenuations, ADC is relatively insensitive to how it is measured. In general, however, ADC values are not readily interpreted unless the measuring conditions are specified in detail. For given measuring conditions, ADC depends on intra‐ and extracellular diffusion coefficients, membrane permeabilities, cell sizes and the cellular volume fraction. If intra‐ and extracellular T2 relaxation rates are different enough, ADC may also depend on the relaxation properties of the system and the echo time. An improved understanding of the precise influence of these factors has been obtained by detailed consideration of theoretical and computer models that can be related to experimental data in simple systems. Further refinements of such models should advance our understanding of water diffusion in tissues.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>8739267</pmid><doi>10.1002/nbm.1940080704</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 1995-11, Vol.8 (7), p.289-296
issn 0952-3480
1099-1492
language eng
recordid cdi_proquest_miscellaneous_77872793
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biological and medical sciences
Body Water - metabolism
Diffusion
Humans
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Spectroscopy - methods
Mathematics
Medical sciences
Miscellaneous. Technology
Models, Biological
Radiodiagnosis. Nmr imagery. Nmr spectrometry
title Diffusion-weighted imaging in tissues: Theoretical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion-weighted%20imaging%20in%20tissues:%20Theoretical%20models&rft.jtitle=NMR%20in%20biomedicine&rft.au=Szafer,%20A.&rft.date=1995-11&rft.volume=8&rft.issue=7&rft.spage=289&rft.epage=296&rft.pages=289-296&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.1940080704&rft_dat=%3Cproquest_cross%3E77872793%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77872793&rft_id=info:pmid/8739267&rfr_iscdi=true