The karyotype of Alligator mississippiensis, and chromosomal mapping of the ZFY/X homologue, Zfc

Comparative mapping studies of X-linked genes in mammals have provided insights into the evolution of the X chromosome. Many reptiles including the American alligator, Alligator mississippiensis, do not appear to possess heteromorphic sex chromosomes, and sex is determined by the incubation temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosoma 1994-12, Vol.103 (7), p.502-507
Hauptverfasser: Valleley, E M, Harrison, C J, Cook, Y, Ferguson, M W, Sharpe, P T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comparative mapping studies of X-linked genes in mammals have provided insights into the evolution of the X chromosome. Many reptiles including the American alligator, Alligator mississippiensis, do not appear to possess heteromorphic sex chromosomes, and sex is determined by the incubation temperature of the egg during embryonic development. Mapping of homologues of mammalian X-linked genes in reptiles could lead to a greater understanding of the evolution of vertebrate sex chromosomes. One of the genes used in the mammalian mapping studies was ZFX, an X-linked copy of the human ZFY gene which was originally isolated as a candidate for the mammalian testis-determining factor (TDF). ZFX is X-linked in eutherians, but maps to two autosomal locations in marsupials and monotremes, close to other genes associated with the eutherian X. The alligator homologue of the ZFY/ZFX genes, Zfc, has been isolated and described previously. A detailed karyotype of A. mississippiensis is presented, together with chromosomal in situ hybridisation data localising the Zfc gene to chromosome 3. Further chromosomal mapping studies using eutherian X-linked genes may reveal conserved chromosomal regions in the alligator that have become part of the eutherian X chromosome during evolution.
ISSN:0009-5915
1432-0886
DOI:10.1007/bf00337388