Computational decompression models

Early computational models for decompression are based on supersaturation assumptions for dissolved gases. Such models, and our understanding of decompression biophysics, have been extended in the past 20 years by analyses of phase separation of gases. Generally termed thermodynamic decompression (o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of bio-medical computing 1987-11, Vol.21 (3), p.205-221
1. Verfasser: Wienke, B.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 3
container_start_page 205
container_title International journal of bio-medical computing
container_volume 21
creator Wienke, B.R.
description Early computational models for decompression are based on supersaturation assumptions for dissolved gases. Such models, and our understanding of decompression biophysics, have been extended in the past 20 years by analyses of phase separation of gases. Generally termed thermodynamic decompression (or phase equilibration), these studies postulate a continuous exchange of inert gas between tissues and nucleation sites (gas micropockets), consistent with many commonplace phenomena. Postulates lead to decompression schedules and transfer mechanisms that differ from their earlier predecessors. The precise physical and computational bases supporting both viewpoints are described and contrasted.
doi_str_mv 10.1016/0020-7101(87)90088-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77808706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020710187900882</els_id><sourcerecordid>77808706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e72f95a7f84204950b715ed4a8d5b300b66666ca77b48128f6523e1fe7b898c43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhnNQ1nX1HygsIqKH6qRNmvQiSPELFrzoOaTJFCL9WJNW8N-bumWP5jJ5Z54ZZl5CzijcUqD5HUAKiYjfayluCgApk_SALPfpI3IcwmeUTLBsQRZZLgou6ZJclH27HQc9uL7TzdqiidpjCFGv295iE07IYa2bgKdzXJGPp8f38iXZvD2_lg-bxGQyHxIUaV1wLWrJUmAFh0pQjpZpaXmVAVT59IwWomKSprLOeZohrVFUspCGZStytZu79f3XiGFQrQsGm0Z32I9BCSFBCsgjyHag8X0IHmu19a7V_kdRUJMdarpbTXcrKdSfHSqNbefz_LFq0e6bZi9i_XKu62B0U3vdGRf2WDQOKOcRu99h0Rr8duhVMA47g9Z5NIOyvft_j18Fn3tu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77808706</pqid></control><display><type>article</type><title>Computational decompression models</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Wienke, B.R.</creator><creatorcontrib>Wienke, B.R.</creatorcontrib><description>Early computational models for decompression are based on supersaturation assumptions for dissolved gases. Such models, and our understanding of decompression biophysics, have been extended in the past 20 years by analyses of phase separation of gases. Generally termed thermodynamic decompression (or phase equilibration), these studies postulate a continuous exchange of inert gas between tissues and nucleation sites (gas micropockets), consistent with many commonplace phenomena. Postulates lead to decompression schedules and transfer mechanisms that differ from their earlier predecessors. The precise physical and computational bases supporting both viewpoints are described and contrasted.</description><identifier>ISSN: 0020-7101</identifier><identifier>DOI: 10.1016/0020-7101(87)90088-2</identifier><identifier>PMID: 3679581</identifier><identifier>CODEN: IJBCBT</identifier><language>eng</language><publisher>Barking: Elsevier B.V</publisher><subject>Biological and medical sciences ; Biophysics ; Computational methods ; Decompression ; Decompression - methods ; Decompression Sickness - prevention &amp; control ; Fundamental and applied biological sciences. Psychology ; Gases - blood ; General aspects, investigation technics, apparatus ; Humans ; Models, Biological ; Nitrogen ; Phase equilibration ; Space life sciences ; Supersaturation ; Thermodynamics ; Tissues, organs and organisms biophysics ; Transport models</subject><ispartof>International journal of bio-medical computing, 1987-11, Vol.21 (3), p.205-221</ispartof><rights>1987</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e72f95a7f84204950b715ed4a8d5b300b66666ca77b48128f6523e1fe7b898c43</citedby><cites>FETCH-LOGICAL-c386t-e72f95a7f84204950b715ed4a8d5b300b66666ca77b48128f6523e1fe7b898c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7430155$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3679581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wienke, B.R.</creatorcontrib><title>Computational decompression models</title><title>International journal of bio-medical computing</title><addtitle>Int J Biomed Comput</addtitle><description>Early computational models for decompression are based on supersaturation assumptions for dissolved gases. Such models, and our understanding of decompression biophysics, have been extended in the past 20 years by analyses of phase separation of gases. Generally termed thermodynamic decompression (or phase equilibration), these studies postulate a continuous exchange of inert gas between tissues and nucleation sites (gas micropockets), consistent with many commonplace phenomena. Postulates lead to decompression schedules and transfer mechanisms that differ from their earlier predecessors. The precise physical and computational bases supporting both viewpoints are described and contrasted.</description><subject>Biological and medical sciences</subject><subject>Biophysics</subject><subject>Computational methods</subject><subject>Decompression</subject><subject>Decompression - methods</subject><subject>Decompression Sickness - prevention &amp; control</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gases - blood</subject><subject>General aspects, investigation technics, apparatus</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Nitrogen</subject><subject>Phase equilibration</subject><subject>Space life sciences</subject><subject>Supersaturation</subject><subject>Thermodynamics</subject><subject>Tissues, organs and organisms biophysics</subject><subject>Transport models</subject><issn>0020-7101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhnNQ1nX1HygsIqKH6qRNmvQiSPELFrzoOaTJFCL9WJNW8N-bumWP5jJ5Z54ZZl5CzijcUqD5HUAKiYjfayluCgApk_SALPfpI3IcwmeUTLBsQRZZLgou6ZJclH27HQc9uL7TzdqiidpjCFGv295iE07IYa2bgKdzXJGPp8f38iXZvD2_lg-bxGQyHxIUaV1wLWrJUmAFh0pQjpZpaXmVAVT59IwWomKSprLOeZohrVFUspCGZStytZu79f3XiGFQrQsGm0Z32I9BCSFBCsgjyHag8X0IHmu19a7V_kdRUJMdarpbTXcrKdSfHSqNbefz_LFq0e6bZi9i_XKu62B0U3vdGRf2WDQOKOcRu99h0Rr8duhVMA47g9Z5NIOyvft_j18Fn3tu</recordid><startdate>19871101</startdate><enddate>19871101</enddate><creator>Wienke, B.R.</creator><general>Elsevier B.V</general><general>Applied Science Publishers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19871101</creationdate><title>Computational decompression models</title><author>Wienke, B.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e72f95a7f84204950b715ed4a8d5b300b66666ca77b48128f6523e1fe7b898c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Biological and medical sciences</topic><topic>Biophysics</topic><topic>Computational methods</topic><topic>Decompression</topic><topic>Decompression - methods</topic><topic>Decompression Sickness - prevention &amp; control</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gases - blood</topic><topic>General aspects, investigation technics, apparatus</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Nitrogen</topic><topic>Phase equilibration</topic><topic>Space life sciences</topic><topic>Supersaturation</topic><topic>Thermodynamics</topic><topic>Tissues, organs and organisms biophysics</topic><topic>Transport models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wienke, B.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of bio-medical computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wienke, B.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational decompression models</atitle><jtitle>International journal of bio-medical computing</jtitle><addtitle>Int J Biomed Comput</addtitle><date>1987-11-01</date><risdate>1987</risdate><volume>21</volume><issue>3</issue><spage>205</spage><epage>221</epage><pages>205-221</pages><issn>0020-7101</issn><coden>IJBCBT</coden><abstract>Early computational models for decompression are based on supersaturation assumptions for dissolved gases. Such models, and our understanding of decompression biophysics, have been extended in the past 20 years by analyses of phase separation of gases. Generally termed thermodynamic decompression (or phase equilibration), these studies postulate a continuous exchange of inert gas between tissues and nucleation sites (gas micropockets), consistent with many commonplace phenomena. Postulates lead to decompression schedules and transfer mechanisms that differ from their earlier predecessors. The precise physical and computational bases supporting both viewpoints are described and contrasted.</abstract><cop>Barking</cop><pub>Elsevier B.V</pub><pmid>3679581</pmid><doi>10.1016/0020-7101(87)90088-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7101
ispartof International journal of bio-medical computing, 1987-11, Vol.21 (3), p.205-221
issn 0020-7101
language eng
recordid cdi_proquest_miscellaneous_77808706
source MEDLINE; Alma/SFX Local Collection
subjects Biological and medical sciences
Biophysics
Computational methods
Decompression
Decompression - methods
Decompression Sickness - prevention & control
Fundamental and applied biological sciences. Psychology
Gases - blood
General aspects, investigation technics, apparatus
Humans
Models, Biological
Nitrogen
Phase equilibration
Space life sciences
Supersaturation
Thermodynamics
Tissues, organs and organisms biophysics
Transport models
title Computational decompression models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20decompression%20models&rft.jtitle=International%20journal%20of%20bio-medical%20computing&rft.au=Wienke,%20B.R.&rft.date=1987-11-01&rft.volume=21&rft.issue=3&rft.spage=205&rft.epage=221&rft.pages=205-221&rft.issn=0020-7101&rft.coden=IJBCBT&rft_id=info:doi/10.1016/0020-7101(87)90088-2&rft_dat=%3Cproquest_cross%3E77808706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77808706&rft_id=info:pmid/3679581&rft_els_id=0020710187900882&rfr_iscdi=true