Assembly and DNA binding of recombinant Ku (p70/p80) autoantigen defined by a novel monoclonal antibody specific for p70/p80 heterodimers

The Ku autoantigen is a heterodimer of 70 kDa (p70) and -80 kDa (p80) subunits that is the DNA-binding component of a DNA-dependent protein kinase (DNA-PK). The 350 kDa (p350) catalytic subunit of DNA-PK phosphorylates Sp-1, Oct-1, p53 and RNA polymerase II in vitro, but the precise cellular role of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 1994-11, Vol.107 ( Pt 11) (11), p.3223-3233
Hauptverfasser: Wang, J, Satoh, M, Pierani, A, Schmitt, J, Chou, C H, Stunnenberg, H G, Roeder, R G, Reeves, W H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Ku autoantigen is a heterodimer of 70 kDa (p70) and -80 kDa (p80) subunits that is the DNA-binding component of a DNA-dependent protein kinase (DNA-PK). The 350 kDa (p350) catalytic subunit of DNA-PK phosphorylates Sp-1, Oct-1, p53 and RNA polymerase II in vitro, but the precise cellular role of DNA-PK remains unclear. In the present studies, the assembly of p70/p80 heterodimers and the interaction of Ku with DNA was investigated using recombinant vaccinia viruses directing the synthesis of human p70 (p70-vacc) and p80 (p80-vacc), and monoclonal antibodies (mAbs). Expression of human Ku antigens in rabbit kidney (RK13) cells could be demonstrated by immunofluorescent staining because this cell line contains little endogenous Ku. A novel mAb designated 162 stained the nuclei of RK13 cells coinfected with p70-vacc and p80-vacc, but not cells that were infected with either virus alone, suggesting that it recognized the p70/p80 heterodimer but not monomeric p70 or p80. In agreement with the immunofluorescence data, 162 immunoprecipitated both p70 and p80 from extracts of coinfected cells, but did not immunoprecipitate either subunit by itself from extracts of cells infected with p70-vacc or p80-vacc, respectively. Conversely, the binding of 162 to Ku isolated from human K562 cells stabilized the p70/p80 heterodimer under conditions that normally dissociate p70 from p80. The nuclei of cells infected with p70-vacc alone could be stained with mAb N3H10 (anti-p70) and cells infected with p80-vacc alone could be stained with mAb 111 (anti-p80), indicating that the formation of p70/p80 heterodimers was not required for nuclear transport. Finally, free recombinant and cellular p70 both bound to DNA efficiently in vitro, suggesting that free p70, like the p70/p80 heterodimer, serves as a DNA-binding factor. Moreover, free human p70 could be released from the nuclei of p70-vacc-infected RK13 cells by deoxyribonuclease I treatment, suggesting that it was associated with chromatin in vivo. The nuclear transport of free p70 and the association of free p70 with chromatin in vivo raise the possibility that newly synthesized cellular p70 might undergo nuclear transport and DNA-binding prior to dimerization with p80 or assembly with p350.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.107.11.3223