ECG myocardial infarct size: a gender-, age-, race-insensitive 12-segment multiple regression model. I: Retrospective learning set of 100 pathoanatomic infarcts and 229 normal control subjects
In this early study of ongoing work with multiple regression modeling for mapping myocardial infarct (MI) into 12 left ventricular (LV) segments, promising results have been presented using electrocardiographic (ECG) QRS variables that are gender, age, and race insensitive (GARI), the GARI-QRS 12-se...
Gespeichert in:
Veröffentlicht in: | Journal of electrocardiology 1994, Vol.27 Suppl, p.31-41 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | |
container_start_page | 31 |
container_title | Journal of electrocardiology |
container_volume | 27 Suppl |
creator | Selvester, R H Wagner, G S Ideker, R E Gates, K Starr, S Ahmed, J Crump, R |
description | In this early study of ongoing work with multiple regression modeling for mapping myocardial infarct (MI) into 12 left ventricular (LV) segments, promising results have been presented using electrocardiographic (ECG) QRS variables that are gender, age, and race insensitive (GARI), the GARI-QRS 12-segment multiple regression model. These include Q, R, and S duration, expressed as percentage total QRS duration, and R/Q duration, R/Q amplitude, R/S duration, and R/S amplitude variables. For version I, building 12 regression models using 68 single and 32 multiple MIs, the GARI-QRS variables correlated with pathoanatomic MI in each of 12 segments with r values ranging from .67 to .88. In version II of the model, using all MIs and 229 normal subjects, r = .73-.91. Version II predictions of MI in 12 LV segments for each subject were used to calculate the predicted total percentage LV infarct, which correlated well with that found at autopsy. The r values found were .81 for all single MIs, .73 for multiple MIs, and .80 for all MIs taken together. With refinements of the input ECG variables to include (1) improvement in the GARI-QRS variables, (2) adding a significant number of subjects with hypertrophies and conduction defects with and without MI to an expanded learning set, and (3) applying the enhanced 12-LV-segment regression models to a similar test set, it is to be expected that these regression models can be improved even further in such a way as to be applicable to general clinical populations using routine computerized ECG analysis programs. |
doi_str_mv | 10.1016/S0022-0736(94)80041-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_77804783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77804783</sourcerecordid><originalsourceid>FETCH-LOGICAL-p121t-11c7a1184a2af5802412208872fc5292d2fb6a40b459355073b96e598d85d4c33</originalsourceid><addsrcrecordid>eNo9kN1qFTEUhXOh1Fp9hMK-EgWnJpnMSaZ3cqhtoSD4c33Yk9kzpuRnTDJCfTofzVFPvVkbFmt_LBZj54JfCC527z5zLmXDdbt73as3hnMlmvYJO_1vP2PPS7nnnPdSyxN2oo1RrW5P2a-r_TWEh2Qxjw49uDhhthWK-0mXgDBTHCk3bwFn2jSjpcbFQrG46n4QCNkUmgPFCmH11S2eINOcqRSXIoQ0kr-A20v4RDWnspD9--YJc3RxhkIV0gSCc1iwfksYsabg7GORAhhHkLKHmHLYCtoUN5CHsg73G6y8YE8n9IVeHu8Z-_rh6sv-prn7eH27f3_XLEKK2ghhNQphFEqcOsOlElJyY7ScbCd7Ocpp2KHig-r6tuu2zYZ-R11vRtONyrbtGXv1j7vk9H2lUg_BFUveY6S0loPWhitt_gTPj8F1CDQeluwC5ofDcfL2N529gvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77804783</pqid></control><display><type>article</type><title>ECG myocardial infarct size: a gender-, age-, race-insensitive 12-segment multiple regression model. I: Retrospective learning set of 100 pathoanatomic infarcts and 229 normal control subjects</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Selvester, R H ; Wagner, G S ; Ideker, R E ; Gates, K ; Starr, S ; Ahmed, J ; Crump, R</creator><creatorcontrib>Selvester, R H ; Wagner, G S ; Ideker, R E ; Gates, K ; Starr, S ; Ahmed, J ; Crump, R</creatorcontrib><description>In this early study of ongoing work with multiple regression modeling for mapping myocardial infarct (MI) into 12 left ventricular (LV) segments, promising results have been presented using electrocardiographic (ECG) QRS variables that are gender, age, and race insensitive (GARI), the GARI-QRS 12-segment multiple regression model. These include Q, R, and S duration, expressed as percentage total QRS duration, and R/Q duration, R/Q amplitude, R/S duration, and R/S amplitude variables. For version I, building 12 regression models using 68 single and 32 multiple MIs, the GARI-QRS variables correlated with pathoanatomic MI in each of 12 segments with r values ranging from .67 to .88. In version II of the model, using all MIs and 229 normal subjects, r = .73-.91. Version II predictions of MI in 12 LV segments for each subject were used to calculate the predicted total percentage LV infarct, which correlated well with that found at autopsy. The r values found were .81 for all single MIs, .73 for multiple MIs, and .80 for all MIs taken together. With refinements of the input ECG variables to include (1) improvement in the GARI-QRS variables, (2) adding a significant number of subjects with hypertrophies and conduction defects with and without MI to an expanded learning set, and (3) applying the enhanced 12-LV-segment regression models to a similar test set, it is to be expected that these regression models can be improved even further in such a way as to be applicable to general clinical populations using routine computerized ECG analysis programs.</description><identifier>ISSN: 0022-0736</identifier><identifier>DOI: 10.1016/S0022-0736(94)80041-3</identifier><identifier>PMID: 7884373</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Age Factors ; Aged ; Computer Simulation ; Continental Population Groups ; Electrocardiography ; Female ; Humans ; Male ; Middle Aged ; Myocardial Infarction - ethnology ; Myocardial Infarction - pathology ; Myocardial Infarction - physiopathology ; Myocardium - pathology ; Predictive Value of Tests ; Regression Analysis ; Retrospective Studies ; Sensitivity and Specificity ; Sex Factors ; Signal Processing, Computer-Assisted</subject><ispartof>Journal of electrocardiology, 1994, Vol.27 Suppl, p.31-41</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7884373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Selvester, R H</creatorcontrib><creatorcontrib>Wagner, G S</creatorcontrib><creatorcontrib>Ideker, R E</creatorcontrib><creatorcontrib>Gates, K</creatorcontrib><creatorcontrib>Starr, S</creatorcontrib><creatorcontrib>Ahmed, J</creatorcontrib><creatorcontrib>Crump, R</creatorcontrib><title>ECG myocardial infarct size: a gender-, age-, race-insensitive 12-segment multiple regression model. I: Retrospective learning set of 100 pathoanatomic infarcts and 229 normal control subjects</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>In this early study of ongoing work with multiple regression modeling for mapping myocardial infarct (MI) into 12 left ventricular (LV) segments, promising results have been presented using electrocardiographic (ECG) QRS variables that are gender, age, and race insensitive (GARI), the GARI-QRS 12-segment multiple regression model. These include Q, R, and S duration, expressed as percentage total QRS duration, and R/Q duration, R/Q amplitude, R/S duration, and R/S amplitude variables. For version I, building 12 regression models using 68 single and 32 multiple MIs, the GARI-QRS variables correlated with pathoanatomic MI in each of 12 segments with r values ranging from .67 to .88. In version II of the model, using all MIs and 229 normal subjects, r = .73-.91. Version II predictions of MI in 12 LV segments for each subject were used to calculate the predicted total percentage LV infarct, which correlated well with that found at autopsy. The r values found were .81 for all single MIs, .73 for multiple MIs, and .80 for all MIs taken together. With refinements of the input ECG variables to include (1) improvement in the GARI-QRS variables, (2) adding a significant number of subjects with hypertrophies and conduction defects with and without MI to an expanded learning set, and (3) applying the enhanced 12-LV-segment regression models to a similar test set, it is to be expected that these regression models can be improved even further in such a way as to be applicable to general clinical populations using routine computerized ECG analysis programs.</description><subject>Adult</subject><subject>Age Factors</subject><subject>Aged</subject><subject>Computer Simulation</subject><subject>Continental Population Groups</subject><subject>Electrocardiography</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Myocardial Infarction - ethnology</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocardial Infarction - physiopathology</subject><subject>Myocardium - pathology</subject><subject>Predictive Value of Tests</subject><subject>Regression Analysis</subject><subject>Retrospective Studies</subject><subject>Sensitivity and Specificity</subject><subject>Sex Factors</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0022-0736</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kN1qFTEUhXOh1Fp9hMK-EgWnJpnMSaZ3cqhtoSD4c33Yk9kzpuRnTDJCfTofzVFPvVkbFmt_LBZj54JfCC527z5zLmXDdbt73as3hnMlmvYJO_1vP2PPS7nnnPdSyxN2oo1RrW5P2a-r_TWEh2Qxjw49uDhhthWK-0mXgDBTHCk3bwFn2jSjpcbFQrG46n4QCNkUmgPFCmH11S2eINOcqRSXIoQ0kr-A20v4RDWnspD9--YJc3RxhkIV0gSCc1iwfksYsabg7GORAhhHkLKHmHLYCtoUN5CHsg73G6y8YE8n9IVeHu8Z-_rh6sv-prn7eH27f3_XLEKK2ghhNQphFEqcOsOlElJyY7ScbCd7Ocpp2KHig-r6tuu2zYZ-R11vRtONyrbtGXv1j7vk9H2lUg_BFUveY6S0loPWhitt_gTPj8F1CDQeluwC5ofDcfL2N529gvs</recordid><startdate>1994</startdate><enddate>1994</enddate><creator>Selvester, R H</creator><creator>Wagner, G S</creator><creator>Ideker, R E</creator><creator>Gates, K</creator><creator>Starr, S</creator><creator>Ahmed, J</creator><creator>Crump, R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>1994</creationdate><title>ECG myocardial infarct size: a gender-, age-, race-insensitive 12-segment multiple regression model. I: Retrospective learning set of 100 pathoanatomic infarcts and 229 normal control subjects</title><author>Selvester, R H ; Wagner, G S ; Ideker, R E ; Gates, K ; Starr, S ; Ahmed, J ; Crump, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p121t-11c7a1184a2af5802412208872fc5292d2fb6a40b459355073b96e598d85d4c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Adult</topic><topic>Age Factors</topic><topic>Aged</topic><topic>Computer Simulation</topic><topic>Continental Population Groups</topic><topic>Electrocardiography</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Myocardial Infarction - ethnology</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocardial Infarction - physiopathology</topic><topic>Myocardium - pathology</topic><topic>Predictive Value of Tests</topic><topic>Regression Analysis</topic><topic>Retrospective Studies</topic><topic>Sensitivity and Specificity</topic><topic>Sex Factors</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selvester, R H</creatorcontrib><creatorcontrib>Wagner, G S</creatorcontrib><creatorcontrib>Ideker, R E</creatorcontrib><creatorcontrib>Gates, K</creatorcontrib><creatorcontrib>Starr, S</creatorcontrib><creatorcontrib>Ahmed, J</creatorcontrib><creatorcontrib>Crump, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selvester, R H</au><au>Wagner, G S</au><au>Ideker, R E</au><au>Gates, K</au><au>Starr, S</au><au>Ahmed, J</au><au>Crump, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ECG myocardial infarct size: a gender-, age-, race-insensitive 12-segment multiple regression model. I: Retrospective learning set of 100 pathoanatomic infarcts and 229 normal control subjects</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>1994</date><risdate>1994</risdate><volume>27 Suppl</volume><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>0022-0736</issn><abstract>In this early study of ongoing work with multiple regression modeling for mapping myocardial infarct (MI) into 12 left ventricular (LV) segments, promising results have been presented using electrocardiographic (ECG) QRS variables that are gender, age, and race insensitive (GARI), the GARI-QRS 12-segment multiple regression model. These include Q, R, and S duration, expressed as percentage total QRS duration, and R/Q duration, R/Q amplitude, R/S duration, and R/S amplitude variables. For version I, building 12 regression models using 68 single and 32 multiple MIs, the GARI-QRS variables correlated with pathoanatomic MI in each of 12 segments with r values ranging from .67 to .88. In version II of the model, using all MIs and 229 normal subjects, r = .73-.91. Version II predictions of MI in 12 LV segments for each subject were used to calculate the predicted total percentage LV infarct, which correlated well with that found at autopsy. The r values found were .81 for all single MIs, .73 for multiple MIs, and .80 for all MIs taken together. With refinements of the input ECG variables to include (1) improvement in the GARI-QRS variables, (2) adding a significant number of subjects with hypertrophies and conduction defects with and without MI to an expanded learning set, and (3) applying the enhanced 12-LV-segment regression models to a similar test set, it is to be expected that these regression models can be improved even further in such a way as to be applicable to general clinical populations using routine computerized ECG analysis programs.</abstract><cop>United States</cop><pmid>7884373</pmid><doi>10.1016/S0022-0736(94)80041-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0736 |
ispartof | Journal of electrocardiology, 1994, Vol.27 Suppl, p.31-41 |
issn | 0022-0736 |
language | eng |
recordid | cdi_proquest_miscellaneous_77804783 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Age Factors Aged Computer Simulation Continental Population Groups Electrocardiography Female Humans Male Middle Aged Myocardial Infarction - ethnology Myocardial Infarction - pathology Myocardial Infarction - physiopathology Myocardium - pathology Predictive Value of Tests Regression Analysis Retrospective Studies Sensitivity and Specificity Sex Factors Signal Processing, Computer-Assisted |
title | ECG myocardial infarct size: a gender-, age-, race-insensitive 12-segment multiple regression model. I: Retrospective learning set of 100 pathoanatomic infarcts and 229 normal control subjects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ECG%20myocardial%20infarct%20size:%20a%20gender-,%20age-,%20race-insensitive%2012-segment%20multiple%20regression%20model.%20I:%20Retrospective%20learning%20set%20of%20100%20pathoanatomic%20infarcts%20and%20229%20normal%20control%20subjects&rft.jtitle=Journal%20of%20electrocardiology&rft.au=Selvester,%20R%20H&rft.date=1994&rft.volume=27%20Suppl&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=0022-0736&rft_id=info:doi/10.1016/S0022-0736(94)80041-3&rft_dat=%3Cproquest_pubme%3E77804783%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77804783&rft_id=info:pmid/7884373&rfr_iscdi=true |