Localization of the Human Gene for Advanced Glycosylation End Product-Specific Receptor (AGER) to Chromosome 6p21.3

Advanced glycosylation end products (AGEs), which are the result of nonenzymatic glycosylation and oxidation of proteins exposed to aldoses, are present in plasma and accumulate in the tissues during aging and at an accelerated rate in diabetes as a result of hyperglycemia. A cell surface receptor f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics 1994-12, Vol.24 (3), p.606-608
Hauptverfasser: Vissing, Henrik, Aagaard, Lissi, Tommerup, Niels, Boel, Esper
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced glycosylation end products (AGEs), which are the result of nonenzymatic glycosylation and oxidation of proteins exposed to aldoses, are present in plasma and accumulate in the tissues during aging and at an accelerated rate in diabetes as a result of hyperglycemia. A cell surface receptor for AGE (RAGE) with homology to the immunoglobulin superfamily of receptors has been isolated, and both RAGE antigen and mRNA have been identified in the endothelium, vascular smooth muscle cells, cardiac myocytes, monocyte-derived macrophages, and neural tissue. AGEs modulate a variety of biological reactions in tissues, such as monocyte/macrophage migration and production of cytokine-growth factors in mononuclear cells, as well as permeability, growth, and thrombogenicity of endothelia cells. Although AGEs interact specifically with RAGE, it has been suggested that AGEs are accidental and potentially pathogenic ligands for this receptor. In this study, we have used fluorescence in situ hybridization (FISH) to assign the human RAGE (AGER) gene to chromosome 6p21.3. 9 refs., 1 fig.
ISSN:0888-7543
1089-8646
DOI:10.1006/geno.1994.1676