ANCOVA for nonparallel slopes: the Johnson-Neyman technique

The Johnson-Neyman (JN) procedure, as originally formulated ( Stat Res Mem, 1 (1936) 57–93), applies to a situation in which measurements on 1 dependent (response) variable, X, and 2 independent (predictor) variables, Z 1 and Z 2, are available for the members of 2 groups. The expected value of X is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of bio-medical computing 1994-11, Vol.37 (3), p.273-286
Hauptverfasser: Kowalski, Charles J., Schneiderman, Emet D., Willis, Stephen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 3
container_start_page 273
container_title International journal of bio-medical computing
container_volume 37
creator Kowalski, Charles J.
Schneiderman, Emet D.
Willis, Stephen M.
description The Johnson-Neyman (JN) procedure, as originally formulated ( Stat Res Mem, 1 (1936) 57–93), applies to a situation in which measurements on 1 dependent (response) variable, X, and 2 independent (predictor) variables, Z 1 and Z 2, are available for the members of 2 groups. The expected value of X is assumed to be a linear function of Z 1 and Z 2, but not necessarily the same function for both groups. The JN technique is used to obtain a set of values for the Z variables for which one would reject, at a specified level of significance α (e.g., α = 0.05), the hypothesis that the 2 groups have the same expected X values. This set of values, or ‘region of significance,’ may then be plotted to obtain a convenient description of those values of Z 1 and Z 2 for which the 2 groups differ. The technique can thus be described as a generalization of the analysis of covariance (ANCOVA) which does not make the assumption that the regression coefficients for the regression of X on the covariates, Z 1 and Z 2, are equal in the groups being compared. In this paper we describe, illustrate and make available a menu-driven PC program (TXJN2) implementing the JN procedure.
doi_str_mv 10.1016/0020-7101(94)90125-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77795442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020710194901252</els_id><sourcerecordid>77795442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-60829a4757677dfe6acd7c2aafb44fe734df507e0ac457537fc90310867a5be83</originalsourceid><addsrcrecordid>eNp9kM1LwzAUwHNQ5pz-Bwo9iOihmrZJX6sgjOEnY7uo15ClL6zSJjXphP33tq7s6Ckv7_3eBz9CziJ6E9EovaU0piF04VXOrnMaxTyMD8h4nz4ix95_dV8GLBmREQDlOc3G5H66mC0_p4G2LjDWNNLJqsIq8JVt0N8F7RqDN7s23ppwgdtamqBFtTbl9wZPyKGWlcfT4Z2Qj6fH99lLOF8-v86m81CxJG7DlGZxLhlwSAEKjalUBahYSr1iTCMkrNCcAlKpGAeegFY5TSKapSD5CrNkQi53cxtnu7W-FXXpFVaVNGg3XgBAzhmLO5DtQOWs9w61aFxZS7cVERW9J9ELEb0QkTPx50n0befD_M2qxmLfNEjq6hdDXXolK-2kUaXfY0mSdtemHfaww7Bz8VOiE16VaBQWpUPVisKW_9_xC_kQhBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77795442</pqid></control><display><type>article</type><title>ANCOVA for nonparallel slopes: the Johnson-Neyman technique</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Kowalski, Charles J. ; Schneiderman, Emet D. ; Willis, Stephen M.</creator><creatorcontrib>Kowalski, Charles J. ; Schneiderman, Emet D. ; Willis, Stephen M.</creatorcontrib><description>The Johnson-Neyman (JN) procedure, as originally formulated ( Stat Res Mem, 1 (1936) 57–93), applies to a situation in which measurements on 1 dependent (response) variable, X, and 2 independent (predictor) variables, Z 1 and Z 2, are available for the members of 2 groups. The expected value of X is assumed to be a linear function of Z 1 and Z 2, but not necessarily the same function for both groups. The JN technique is used to obtain a set of values for the Z variables for which one would reject, at a specified level of significance α (e.g., α = 0.05), the hypothesis that the 2 groups have the same expected X values. This set of values, or ‘region of significance,’ may then be plotted to obtain a convenient description of those values of Z 1 and Z 2 for which the 2 groups differ. The technique can thus be described as a generalization of the analysis of covariance (ANCOVA) which does not make the assumption that the regression coefficients for the regression of X on the covariates, Z 1 and Z 2, are equal in the groups being compared. In this paper we describe, illustrate and make available a menu-driven PC program (TXJN2) implementing the JN procedure.</description><identifier>ISSN: 0020-7101</identifier><identifier>DOI: 10.1016/0020-7101(94)90125-2</identifier><identifier>PMID: 7705908</identifier><identifier>CODEN: IJBCBT</identifier><language>eng</language><publisher>Barking: Elsevier B.V</publisher><subject>Analysis of covariance ; Analysis of Variance ; Biological and medical sciences ; Computer Graphics ; Computerized, statistical medical data processing and models in biomedicine ; Confidence Intervals ; Humans ; Kidney Function Tests ; Liver Cirrhosis - physiopathology ; Liver Cirrhosis - surgery ; Mathematical Computing ; Medical sciences ; Medical statistics ; Nonparallel regressions ; PC program ; Randomized Controlled Trials as Topic - methods ; Region of significance ; Regression Analysis ; Software ; Software Design ; Three-dimensional graphics ; Urea - metabolism</subject><ispartof>International journal of bio-medical computing, 1994-11, Vol.37 (3), p.273-286</ispartof><rights>1994</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-60829a4757677dfe6acd7c2aafb44fe734df507e0ac457537fc90310867a5be83</citedby><cites>FETCH-LOGICAL-c432t-60829a4757677dfe6acd7c2aafb44fe734df507e0ac457537fc90310867a5be83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3363106$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7705908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalski, Charles J.</creatorcontrib><creatorcontrib>Schneiderman, Emet D.</creatorcontrib><creatorcontrib>Willis, Stephen M.</creatorcontrib><title>ANCOVA for nonparallel slopes: the Johnson-Neyman technique</title><title>International journal of bio-medical computing</title><addtitle>Int J Biomed Comput</addtitle><description>The Johnson-Neyman (JN) procedure, as originally formulated ( Stat Res Mem, 1 (1936) 57–93), applies to a situation in which measurements on 1 dependent (response) variable, X, and 2 independent (predictor) variables, Z 1 and Z 2, are available for the members of 2 groups. The expected value of X is assumed to be a linear function of Z 1 and Z 2, but not necessarily the same function for both groups. The JN technique is used to obtain a set of values for the Z variables for which one would reject, at a specified level of significance α (e.g., α = 0.05), the hypothesis that the 2 groups have the same expected X values. This set of values, or ‘region of significance,’ may then be plotted to obtain a convenient description of those values of Z 1 and Z 2 for which the 2 groups differ. The technique can thus be described as a generalization of the analysis of covariance (ANCOVA) which does not make the assumption that the regression coefficients for the regression of X on the covariates, Z 1 and Z 2, are equal in the groups being compared. In this paper we describe, illustrate and make available a menu-driven PC program (TXJN2) implementing the JN procedure.</description><subject>Analysis of covariance</subject><subject>Analysis of Variance</subject><subject>Biological and medical sciences</subject><subject>Computer Graphics</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Confidence Intervals</subject><subject>Humans</subject><subject>Kidney Function Tests</subject><subject>Liver Cirrhosis - physiopathology</subject><subject>Liver Cirrhosis - surgery</subject><subject>Mathematical Computing</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Nonparallel regressions</subject><subject>PC program</subject><subject>Randomized Controlled Trials as Topic - methods</subject><subject>Region of significance</subject><subject>Regression Analysis</subject><subject>Software</subject><subject>Software Design</subject><subject>Three-dimensional graphics</subject><subject>Urea - metabolism</subject><issn>0020-7101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1LwzAUwHNQ5pz-Bwo9iOihmrZJX6sgjOEnY7uo15ClL6zSJjXphP33tq7s6Ckv7_3eBz9CziJ6E9EovaU0piF04VXOrnMaxTyMD8h4nz4ix95_dV8GLBmREQDlOc3G5H66mC0_p4G2LjDWNNLJqsIq8JVt0N8F7RqDN7s23ppwgdtamqBFtTbl9wZPyKGWlcfT4Z2Qj6fH99lLOF8-v86m81CxJG7DlGZxLhlwSAEKjalUBahYSr1iTCMkrNCcAlKpGAeegFY5TSKapSD5CrNkQi53cxtnu7W-FXXpFVaVNGg3XgBAzhmLO5DtQOWs9w61aFxZS7cVERW9J9ELEb0QkTPx50n0befD_M2qxmLfNEjq6hdDXXolK-2kUaXfY0mSdtemHfaww7Bz8VOiE16VaBQWpUPVisKW_9_xC_kQhBY</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Kowalski, Charles J.</creator><creator>Schneiderman, Emet D.</creator><creator>Willis, Stephen M.</creator><general>Elsevier B.V</general><general>Applied Science Publishers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19941101</creationdate><title>ANCOVA for nonparallel slopes: the Johnson-Neyman technique</title><author>Kowalski, Charles J. ; Schneiderman, Emet D. ; Willis, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-60829a4757677dfe6acd7c2aafb44fe734df507e0ac457537fc90310867a5be83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Analysis of covariance</topic><topic>Analysis of Variance</topic><topic>Biological and medical sciences</topic><topic>Computer Graphics</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Confidence Intervals</topic><topic>Humans</topic><topic>Kidney Function Tests</topic><topic>Liver Cirrhosis - physiopathology</topic><topic>Liver Cirrhosis - surgery</topic><topic>Mathematical Computing</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Nonparallel regressions</topic><topic>PC program</topic><topic>Randomized Controlled Trials as Topic - methods</topic><topic>Region of significance</topic><topic>Regression Analysis</topic><topic>Software</topic><topic>Software Design</topic><topic>Three-dimensional graphics</topic><topic>Urea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalski, Charles J.</creatorcontrib><creatorcontrib>Schneiderman, Emet D.</creatorcontrib><creatorcontrib>Willis, Stephen M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of bio-medical computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalski, Charles J.</au><au>Schneiderman, Emet D.</au><au>Willis, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ANCOVA for nonparallel slopes: the Johnson-Neyman technique</atitle><jtitle>International journal of bio-medical computing</jtitle><addtitle>Int J Biomed Comput</addtitle><date>1994-11-01</date><risdate>1994</risdate><volume>37</volume><issue>3</issue><spage>273</spage><epage>286</epage><pages>273-286</pages><issn>0020-7101</issn><coden>IJBCBT</coden><abstract>The Johnson-Neyman (JN) procedure, as originally formulated ( Stat Res Mem, 1 (1936) 57–93), applies to a situation in which measurements on 1 dependent (response) variable, X, and 2 independent (predictor) variables, Z 1 and Z 2, are available for the members of 2 groups. The expected value of X is assumed to be a linear function of Z 1 and Z 2, but not necessarily the same function for both groups. The JN technique is used to obtain a set of values for the Z variables for which one would reject, at a specified level of significance α (e.g., α = 0.05), the hypothesis that the 2 groups have the same expected X values. This set of values, or ‘region of significance,’ may then be plotted to obtain a convenient description of those values of Z 1 and Z 2 for which the 2 groups differ. The technique can thus be described as a generalization of the analysis of covariance (ANCOVA) which does not make the assumption that the regression coefficients for the regression of X on the covariates, Z 1 and Z 2, are equal in the groups being compared. In this paper we describe, illustrate and make available a menu-driven PC program (TXJN2) implementing the JN procedure.</abstract><cop>Barking</cop><pub>Elsevier B.V</pub><pmid>7705908</pmid><doi>10.1016/0020-7101(94)90125-2</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7101
ispartof International journal of bio-medical computing, 1994-11, Vol.37 (3), p.273-286
issn 0020-7101
language eng
recordid cdi_proquest_miscellaneous_77795442
source MEDLINE; Alma/SFX Local Collection
subjects Analysis of covariance
Analysis of Variance
Biological and medical sciences
Computer Graphics
Computerized, statistical medical data processing and models in biomedicine
Confidence Intervals
Humans
Kidney Function Tests
Liver Cirrhosis - physiopathology
Liver Cirrhosis - surgery
Mathematical Computing
Medical sciences
Medical statistics
Nonparallel regressions
PC program
Randomized Controlled Trials as Topic - methods
Region of significance
Regression Analysis
Software
Software Design
Three-dimensional graphics
Urea - metabolism
title ANCOVA for nonparallel slopes: the Johnson-Neyman technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A41%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ANCOVA%20for%20nonparallel%20slopes:%20the%20Johnson-Neyman%20technique&rft.jtitle=International%20journal%20of%20bio-medical%20computing&rft.au=Kowalski,%20Charles%20J.&rft.date=1994-11-01&rft.volume=37&rft.issue=3&rft.spage=273&rft.epage=286&rft.pages=273-286&rft.issn=0020-7101&rft.coden=IJBCBT&rft_id=info:doi/10.1016/0020-7101(94)90125-2&rft_dat=%3Cproquest_cross%3E77795442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77795442&rft_id=info:pmid/7705908&rft_els_id=0020710194901252&rfr_iscdi=true