A neural network model of speech acquisition and motor equivalent speech production

This article describes a neural network model that addresses the acquisition of speaking skills by infants and subsequent motor equivalent production of speech sounds. The model learns two mappings during a babbling phase. A phonetic-to-orosensory mapping specifies a vocal tract target for each spee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 1994-11, Vol.72 (1), p.43-53
1. Verfasser: Guenther, F H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 43
container_title Biological cybernetics
container_volume 72
creator Guenther, F H
description This article describes a neural network model that addresses the acquisition of speaking skills by infants and subsequent motor equivalent production of speech sounds. The model learns two mappings during a babbling phase. A phonetic-to-orosensory mapping specifies a vocal tract target for each speech sound; these targets take the form of convex regions in orosensory coordinates defining the shape of the vocal tract. The babbling process wherein these convex region targets are formed explains how an infant can learn phoneme-specific and language-specific limits on acceptable variability of articulator movements. The model also learns an orosensory-to-articulatory mapping wherein cells coding desired movement directions in orosensory space learn articulator movements that achieve these orosensory movement directions. The resulting mapping provides a natural explanation for the formation of coordinative structures. This mapping also makes efficient use of redundancy in the articulator system, thereby providing the model with motor equivalent capabilities. Simulations verify the model's ability to compensate for constraints or perturbations applied to the articulators automatically and without new learning and to explain contextual variability seen in human speech production.
doi_str_mv 10.1007/bf00206237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77789932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77789932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-9c217679dc7bad1d8a34f8ab27f2441fd3beb93f8cb5aa73dbb64664df28041f3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRaq1u3AtZuRCidx7NzCxrsSoUXKjrME-MJpl2JlH896Y0dXXgno9z4UPoEsMtBuB32gMQKAjlR2iKGSU5cA7HaAqUQY4JwCk6S-kTACSZywmacCFAYjZFr4usdX1U9RDdT4hfWROsq7Pgs7Rxznxkymz7KlVdFdpMtXbouxAzNxy_Ve3a7sBtYrC92WHn6MSrOrmLMWfoffXwtnzK1y-Pz8vFOjdUyC6XhmBecGkN18piKxRlXihNuCeMYW-pdlpSL4yeK8Wp1bpgRcGsJwKGns7Q9X53eL3tXerKpkrG1bVqXehTyTkXUlIygDd70MSQUnS-3MSqUfG3xFDuDJb3q4PBAb4aV3vdOPuPjsroHydlbH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77789932</pqid></control><display><type>article</type><title>A neural network model of speech acquisition and motor equivalent speech production</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guenther, F H</creator><creatorcontrib>Guenther, F H</creatorcontrib><description>This article describes a neural network model that addresses the acquisition of speaking skills by infants and subsequent motor equivalent production of speech sounds. The model learns two mappings during a babbling phase. A phonetic-to-orosensory mapping specifies a vocal tract target for each speech sound; these targets take the form of convex regions in orosensory coordinates defining the shape of the vocal tract. The babbling process wherein these convex region targets are formed explains how an infant can learn phoneme-specific and language-specific limits on acceptable variability of articulator movements. The model also learns an orosensory-to-articulatory mapping wherein cells coding desired movement directions in orosensory space learn articulator movements that achieve these orosensory movement directions. The resulting mapping provides a natural explanation for the formation of coordinative structures. This mapping also makes efficient use of redundancy in the articulator system, thereby providing the model with motor equivalent capabilities. Simulations verify the model's ability to compensate for constraints or perturbations applied to the articulators automatically and without new learning and to explain contextual variability seen in human speech production.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/bf00206237</identifier><identifier>PMID: 7880914</identifier><language>eng</language><publisher>Germany</publisher><subject>Child ; Computer Simulation ; Humans ; Neural Networks (Computer) ; Speech - physiology</subject><ispartof>Biological cybernetics, 1994-11, Vol.72 (1), p.43-53</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-9c217679dc7bad1d8a34f8ab27f2441fd3beb93f8cb5aa73dbb64664df28041f3</citedby><cites>FETCH-LOGICAL-c389t-9c217679dc7bad1d8a34f8ab27f2441fd3beb93f8cb5aa73dbb64664df28041f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7880914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guenther, F H</creatorcontrib><title>A neural network model of speech acquisition and motor equivalent speech production</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><description>This article describes a neural network model that addresses the acquisition of speaking skills by infants and subsequent motor equivalent production of speech sounds. The model learns two mappings during a babbling phase. A phonetic-to-orosensory mapping specifies a vocal tract target for each speech sound; these targets take the form of convex regions in orosensory coordinates defining the shape of the vocal tract. The babbling process wherein these convex region targets are formed explains how an infant can learn phoneme-specific and language-specific limits on acceptable variability of articulator movements. The model also learns an orosensory-to-articulatory mapping wherein cells coding desired movement directions in orosensory space learn articulator movements that achieve these orosensory movement directions. The resulting mapping provides a natural explanation for the formation of coordinative structures. This mapping also makes efficient use of redundancy in the articulator system, thereby providing the model with motor equivalent capabilities. Simulations verify the model's ability to compensate for constraints or perturbations applied to the articulators automatically and without new learning and to explain contextual variability seen in human speech production.</description><subject>Child</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Neural Networks (Computer)</subject><subject>Speech - physiology</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLw0AUhQdRaq1u3AtZuRCidx7NzCxrsSoUXKjrME-MJpl2JlH896Y0dXXgno9z4UPoEsMtBuB32gMQKAjlR2iKGSU5cA7HaAqUQY4JwCk6S-kTACSZywmacCFAYjZFr4usdX1U9RDdT4hfWROsq7Pgs7Rxznxkymz7KlVdFdpMtXbouxAzNxy_Ve3a7sBtYrC92WHn6MSrOrmLMWfoffXwtnzK1y-Pz8vFOjdUyC6XhmBecGkN18piKxRlXihNuCeMYW-pdlpSL4yeK8Wp1bpgRcGsJwKGns7Q9X53eL3tXerKpkrG1bVqXehTyTkXUlIygDd70MSQUnS-3MSqUfG3xFDuDJb3q4PBAb4aV3vdOPuPjsroHydlbH0</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>Guenther, F H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19941101</creationdate><title>A neural network model of speech acquisition and motor equivalent speech production</title><author>Guenther, F H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-9c217679dc7bad1d8a34f8ab27f2441fd3beb93f8cb5aa73dbb64664df28041f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Child</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Neural Networks (Computer)</topic><topic>Speech - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guenther, F H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guenther, F H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network model of speech acquisition and motor equivalent speech production</atitle><jtitle>Biological cybernetics</jtitle><addtitle>Biol Cybern</addtitle><date>1994-11-01</date><risdate>1994</risdate><volume>72</volume><issue>1</issue><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>This article describes a neural network model that addresses the acquisition of speaking skills by infants and subsequent motor equivalent production of speech sounds. The model learns two mappings during a babbling phase. A phonetic-to-orosensory mapping specifies a vocal tract target for each speech sound; these targets take the form of convex regions in orosensory coordinates defining the shape of the vocal tract. The babbling process wherein these convex region targets are formed explains how an infant can learn phoneme-specific and language-specific limits on acceptable variability of articulator movements. The model also learns an orosensory-to-articulatory mapping wherein cells coding desired movement directions in orosensory space learn articulator movements that achieve these orosensory movement directions. The resulting mapping provides a natural explanation for the formation of coordinative structures. This mapping also makes efficient use of redundancy in the articulator system, thereby providing the model with motor equivalent capabilities. Simulations verify the model's ability to compensate for constraints or perturbations applied to the articulators automatically and without new learning and to explain contextual variability seen in human speech production.</abstract><cop>Germany</cop><pmid>7880914</pmid><doi>10.1007/bf00206237</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-1200
ispartof Biological cybernetics, 1994-11, Vol.72 (1), p.43-53
issn 0340-1200
1432-0770
language eng
recordid cdi_proquest_miscellaneous_77789932
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Child
Computer Simulation
Humans
Neural Networks (Computer)
Speech - physiology
title A neural network model of speech acquisition and motor equivalent speech production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20model%20of%20speech%20acquisition%20and%20motor%20equivalent%20speech%20production&rft.jtitle=Biological%20cybernetics&rft.au=Guenther,%20F%20H&rft.date=1994-11-01&rft.volume=72&rft.issue=1&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/bf00206237&rft_dat=%3Cproquest_cross%3E77789932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77789932&rft_id=info:pmid/7880914&rfr_iscdi=true