Effects of physiologic waveform variability in triggered MR imaging: Theoretical analysis
One of the assumptions inherent in most forms of triggered magnetic resonance (MR) imaging is that the pulsatile waveform (be it cardiac, respiratory, or some other) is purely periodic. In reality, the periodicity condition is rarely met. Physiologic waveform variability may lead to image artifacts...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 1994-11, Vol.4 (6), p.853-867 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 867 |
---|---|
container_issue | 6 |
container_start_page | 853 |
container_title | Journal of magnetic resonance imaging |
container_volume | 4 |
creator | Lauzon, M. Louis Holdsworth, David W. Frayne, Richard Rutt, Brian K. |
description | One of the assumptions inherent in most forms of triggered magnetic resonance (MR) imaging is that the pulsatile waveform (be it cardiac, respiratory, or some other) is purely periodic. In reality, the periodicity condition is rarely met. Physiologic waveform variability may lead to image artifacts and errors in velocity or volume flow rate estimates. The authors analyze the effects of physiologic waveform variability in triggered MR imaging. They propose that this variability be treated as a modulation of the underlying motion waveform. This report concentrates on amplitude modulation of the velocity waveform, which results in amplitude and phase modulation of the transverse magnetization. Established Fourier and modulation theory and the recently described principles of (k, t)‐space were used to derive the appearance of physiologic waveform variability artifacts in triggered MR images and to predict errors in time‐averaged and instantaneous velocity estimates that may result from such motion effects, including effects such as ghost overlap. Simulations and experimental results are provided to confirm the theory. |
doi_str_mv | 10.1002/jmri.1880040618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77754652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77754652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-8048430ddecabacefecc0d6653e5abd2e3c7513b7ea0d2b4c076bcc7b2aa6d653</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0E4n3mhOQTt8DGiR-FEypQQBQQ4iFOluNsgiFpip1S-u8JagXixGlXmplPu0PITgz7MQA7eK2924-VAkhBxGqJrMecsYhxJZa7HXgSxQrkGtkI4RUAer2Ur5JVqQTvpXKdPJ8WBdo20Kag45dZcE3VlM7SqfnAovE1_TDemcxVrp1RN6Ktd2WJHnM6vKOuNqUblYf0_gUbj62zpqJmZKqOE7bISmGqgNuLuUkezk7v--fR1c3gon98FVnWkypSkKo0gTxHazJjsbvGQi4ET5CbLGeYWMnjJJNoIGdZakGKzFqZMWNE3tk2yd6cO_bN-wRDq2sXLFaVGWEzCVpKyVPBWWc8mButb0LwWOix7z7wMx2D_i5Tf5epf8vsErsL9CSrMf_xL9rr9KO5PnUVzv7D6cvh3cUfejRPu9Di50_a-DctZCK5froe6MehuE3PThJ9nXwBfu2TUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>77754652</pqid></control><display><type>article</type><title>Effects of physiologic waveform variability in triggered MR imaging: Theoretical analysis</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Lauzon, M. Louis ; Holdsworth, David W. ; Frayne, Richard ; Rutt, Brian K.</creator><creatorcontrib>Lauzon, M. Louis ; Holdsworth, David W. ; Frayne, Richard ; Rutt, Brian K.</creatorcontrib><description>One of the assumptions inherent in most forms of triggered magnetic resonance (MR) imaging is that the pulsatile waveform (be it cardiac, respiratory, or some other) is purely periodic. In reality, the periodicity condition is rarely met. Physiologic waveform variability may lead to image artifacts and errors in velocity or volume flow rate estimates. The authors analyze the effects of physiologic waveform variability in triggered MR imaging. They propose that this variability be treated as a modulation of the underlying motion waveform. This report concentrates on amplitude modulation of the velocity waveform, which results in amplitude and phase modulation of the transverse magnetization. Established Fourier and modulation theory and the recently described principles of (k, t)‐space were used to derive the appearance of physiologic waveform variability artifacts in triggered MR images and to predict errors in time‐averaged and instantaneous velocity estimates that may result from such motion effects, including effects such as ghost overlap. Simulations and experimental results are provided to confirm the theory.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.1880040618</identifier><identifier>PMID: 7865947</identifier><language>eng</language><publisher>Baltimore: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>12944 ; Algorithms ; Blood ; Blood Flow Velocity - physiology ; Blood Volume - physiology ; Blood, flow dynamics, 9, 12944 ; Carotid Arteries - physiology ; Computer Simulation ; Flow artifacts ; flow dynamics ; Forecasting ; Fourier Analysis ; Hemorheology ; Humans ; Image Enhancement - methods ; Image processing ; Magnetic Resonance Imaging - methods ; Magnetics ; mathematical ; Model, mathematical ; Models, Cardiovascular ; Models, Structural ; Models, Theoretical ; Periodicity ; Phase imaging ; Pulsatile Flow - physiology ; Regional Blood Flow - physiology ; Signal Processing, Computer-Assisted ; Vascular imaging ; Velocity studies</subject><ispartof>Journal of magnetic resonance imaging, 1994-11, Vol.4 (6), p.853-867</ispartof><rights>Copyright © 1994 Wiley‐Liss, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-8048430ddecabacefecc0d6653e5abd2e3c7513b7ea0d2b4c076bcc7b2aa6d653</citedby><cites>FETCH-LOGICAL-c2978-8048430ddecabacefecc0d6653e5abd2e3c7513b7ea0d2b4c076bcc7b2aa6d653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.1880040618$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.1880040618$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7865947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lauzon, M. Louis</creatorcontrib><creatorcontrib>Holdsworth, David W.</creatorcontrib><creatorcontrib>Frayne, Richard</creatorcontrib><creatorcontrib>Rutt, Brian K.</creatorcontrib><title>Effects of physiologic waveform variability in triggered MR imaging: Theoretical analysis</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>One of the assumptions inherent in most forms of triggered magnetic resonance (MR) imaging is that the pulsatile waveform (be it cardiac, respiratory, or some other) is purely periodic. In reality, the periodicity condition is rarely met. Physiologic waveform variability may lead to image artifacts and errors in velocity or volume flow rate estimates. The authors analyze the effects of physiologic waveform variability in triggered MR imaging. They propose that this variability be treated as a modulation of the underlying motion waveform. This report concentrates on amplitude modulation of the velocity waveform, which results in amplitude and phase modulation of the transverse magnetization. Established Fourier and modulation theory and the recently described principles of (k, t)‐space were used to derive the appearance of physiologic waveform variability artifacts in triggered MR images and to predict errors in time‐averaged and instantaneous velocity estimates that may result from such motion effects, including effects such as ghost overlap. Simulations and experimental results are provided to confirm the theory.</description><subject>12944</subject><subject>Algorithms</subject><subject>Blood</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Volume - physiology</subject><subject>Blood, flow dynamics, 9, 12944</subject><subject>Carotid Arteries - physiology</subject><subject>Computer Simulation</subject><subject>Flow artifacts</subject><subject>flow dynamics</subject><subject>Forecasting</subject><subject>Fourier Analysis</subject><subject>Hemorheology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image processing</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetics</subject><subject>mathematical</subject><subject>Model, mathematical</subject><subject>Models, Cardiovascular</subject><subject>Models, Structural</subject><subject>Models, Theoretical</subject><subject>Periodicity</subject><subject>Phase imaging</subject><subject>Pulsatile Flow - physiology</subject><subject>Regional Blood Flow - physiology</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Vascular imaging</subject><subject>Velocity studies</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtPwzAQhC0E4n3mhOQTt8DGiR-FEypQQBQQ4iFOluNsgiFpip1S-u8JagXixGlXmplPu0PITgz7MQA7eK2924-VAkhBxGqJrMecsYhxJZa7HXgSxQrkGtkI4RUAer2Ur5JVqQTvpXKdPJ8WBdo20Kag45dZcE3VlM7SqfnAovE1_TDemcxVrp1RN6Ktd2WJHnM6vKOuNqUblYf0_gUbj62zpqJmZKqOE7bISmGqgNuLuUkezk7v--fR1c3gon98FVnWkypSkKo0gTxHazJjsbvGQi4ET5CbLGeYWMnjJJNoIGdZakGKzFqZMWNE3tk2yd6cO_bN-wRDq2sXLFaVGWEzCVpKyVPBWWc8mButb0LwWOix7z7wMx2D_i5Tf5epf8vsErsL9CSrMf_xL9rr9KO5PnUVzv7D6cvh3cUfejRPu9Di50_a-DctZCK5froe6MehuE3PThJ9nXwBfu2TUg</recordid><startdate>199411</startdate><enddate>199411</enddate><creator>Lauzon, M. Louis</creator><creator>Holdsworth, David W.</creator><creator>Frayne, Richard</creator><creator>Rutt, Brian K.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199411</creationdate><title>Effects of physiologic waveform variability in triggered MR imaging: Theoretical analysis</title><author>Lauzon, M. Louis ; Holdsworth, David W. ; Frayne, Richard ; Rutt, Brian K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-8048430ddecabacefecc0d6653e5abd2e3c7513b7ea0d2b4c076bcc7b2aa6d653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>12944</topic><topic>Algorithms</topic><topic>Blood</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Volume - physiology</topic><topic>Blood, flow dynamics, 9, 12944</topic><topic>Carotid Arteries - physiology</topic><topic>Computer Simulation</topic><topic>Flow artifacts</topic><topic>flow dynamics</topic><topic>Forecasting</topic><topic>Fourier Analysis</topic><topic>Hemorheology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image processing</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetics</topic><topic>mathematical</topic><topic>Model, mathematical</topic><topic>Models, Cardiovascular</topic><topic>Models, Structural</topic><topic>Models, Theoretical</topic><topic>Periodicity</topic><topic>Phase imaging</topic><topic>Pulsatile Flow - physiology</topic><topic>Regional Blood Flow - physiology</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Vascular imaging</topic><topic>Velocity studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauzon, M. Louis</creatorcontrib><creatorcontrib>Holdsworth, David W.</creatorcontrib><creatorcontrib>Frayne, Richard</creatorcontrib><creatorcontrib>Rutt, Brian K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauzon, M. Louis</au><au>Holdsworth, David W.</au><au>Frayne, Richard</au><au>Rutt, Brian K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of physiologic waveform variability in triggered MR imaging: Theoretical analysis</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>1994-11</date><risdate>1994</risdate><volume>4</volume><issue>6</issue><spage>853</spage><epage>867</epage><pages>853-867</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>One of the assumptions inherent in most forms of triggered magnetic resonance (MR) imaging is that the pulsatile waveform (be it cardiac, respiratory, or some other) is purely periodic. In reality, the periodicity condition is rarely met. Physiologic waveform variability may lead to image artifacts and errors in velocity or volume flow rate estimates. The authors analyze the effects of physiologic waveform variability in triggered MR imaging. They propose that this variability be treated as a modulation of the underlying motion waveform. This report concentrates on amplitude modulation of the velocity waveform, which results in amplitude and phase modulation of the transverse magnetization. Established Fourier and modulation theory and the recently described principles of (k, t)‐space were used to derive the appearance of physiologic waveform variability artifacts in triggered MR images and to predict errors in time‐averaged and instantaneous velocity estimates that may result from such motion effects, including effects such as ghost overlap. Simulations and experimental results are provided to confirm the theory.</abstract><cop>Baltimore</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>7865947</pmid><doi>10.1002/jmri.1880040618</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 1994-11, Vol.4 (6), p.853-867 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_77754652 |
source | MEDLINE; Wiley Online Library |
subjects | 12944 Algorithms Blood Blood Flow Velocity - physiology Blood Volume - physiology Blood, flow dynamics, 9, 12944 Carotid Arteries - physiology Computer Simulation Flow artifacts flow dynamics Forecasting Fourier Analysis Hemorheology Humans Image Enhancement - methods Image processing Magnetic Resonance Imaging - methods Magnetics mathematical Model, mathematical Models, Cardiovascular Models, Structural Models, Theoretical Periodicity Phase imaging Pulsatile Flow - physiology Regional Blood Flow - physiology Signal Processing, Computer-Assisted Vascular imaging Velocity studies |
title | Effects of physiologic waveform variability in triggered MR imaging: Theoretical analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20physiologic%20waveform%20variability%20in%20triggered%20MR%20imaging:%20Theoretical%20analysis&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Lauzon,%20M.%20Louis&rft.date=1994-11&rft.volume=4&rft.issue=6&rft.spage=853&rft.epage=867&rft.pages=853-867&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.1880040618&rft_dat=%3Cproquest_cross%3E77754652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=77754652&rft_id=info:pmid/7865947&rfr_iscdi=true |