Calcium waves in gray matter are due to voltage-sensitive glial membrane channels

The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 1994-11, Vol.663 (1), p.77-83
Hauptverfasser: Fernandes de Lima, V.M., Goldermann, M., Hanke, W.R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83
container_issue 1
container_start_page 77
container_title Brain research
container_volume 663
creator Fernandes de Lima, V.M.
Goldermann, M.
Hanke, W.R.L.
description The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be measured non-invasively with optical methods. Additionally, incubation with fluorescent dyes allows to follow calcium fluxes in parallel. The IOS can be divided into red and green scatter of light. We show that during spreading depression the red scatter signal precedes the green scatter signal and that calcium signal matches the red scatter signal. Incubation of the retina with barium chloride leads to a reversible depression of red scatter and calcium signal whereas the green scatter signal is hardly effected. The wave propagation velocity is reduced, too. This supports the idea that the early red scatter signal is a direct visualisation of glial membrane potential and that glia cells in the chicken retina are involved in the control of extracellular calcium.
doi_str_mv 10.1016/0006-8993(94)90464-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77736533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0006899394904642</els_id><sourcerecordid>77736533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-cbc6de61b2f3d2f683ae4c6dd6fe9ec949eed8d00efe804e83e223d8df6505243</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVIcB03_yAFHUJJD5vqa7WrSyCYpC0YQqA9C1madRS0u660u8X_vnJsfGxPw8w88zI8CF1TckcJlV8JIbKoleK3SnxRREhRsDM0p3XFCskEOUfzE_IBXab0llvOFZmhWVWXRFR8jl6WJlg_tviPmSBh3-FNNDvcmmGAiE0E7EbAQ4-nPgxmA0WCLvnBT4A3wZuAW2jX0XSA7avpOgjpI7poTEhwdawL9Ovp8efye7F6_vZj-bAqrKDVUNi1lQ4kXbOGO9bImhsQeeRkAwqsEgrA1Y4QaKAmAmoOjPE8aWRJSib4An0-5G5j_3uENOjWJwsh5Gf6MemqqrgsOf8vSKUsKyr3ieIA2tinFKHR2-hbE3eaEr1Xrvc-9d6nVkK_K9csn3065o_rFtzp6Og472-Oe5OsCU22ZX06YZwTTpnM2P0Byw5h8hB1sh46C85HsIN2vf_3H38B77Wdgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16657164</pqid></control><display><type>article</type><title>Calcium waves in gray matter are due to voltage-sensitive glial membrane channels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fernandes de Lima, V.M. ; Goldermann, M. ; Hanke, W.R.L.</creator><creatorcontrib>Fernandes de Lima, V.M. ; Goldermann, M. ; Hanke, W.R.L.</creatorcontrib><description>The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be measured non-invasively with optical methods. Additionally, incubation with fluorescent dyes allows to follow calcium fluxes in parallel. The IOS can be divided into red and green scatter of light. We show that during spreading depression the red scatter signal precedes the green scatter signal and that calcium signal matches the red scatter signal. Incubation of the retina with barium chloride leads to a reversible depression of red scatter and calcium signal whereas the green scatter signal is hardly effected. The wave propagation velocity is reduced, too. This supports the idea that the early red scatter signal is a direct visualisation of glial membrane potential and that glia cells in the chicken retina are involved in the control of extracellular calcium.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/0006-8993(94)90464-2</identifier><identifier>PMID: 7850473</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Animals ; Barium - pharmacology ; Biological and medical sciences ; Ca 2+ wave ; Calcium - metabolism ; Calcium Channels - drug effects ; Calcium Channels - physiology ; Cell Membrane - physiology ; Chickens ; Cortical Spreading Depression - physiology ; Eye and associated structures. Visual pathways and centers. Vision ; Fluorescent Dyes ; Fundamental and applied biological sciences. Psychology ; Glial channel ; In Vitro Techniques ; Intrinsic optical signal ; Light ; Neuroglia - drug effects ; Neuroglia - physiology ; Periaqueductal Gray - physiology ; Retina ; Retina - physiology ; Scattering, Radiation ; Spreading depression ; Vertebrates: nervous system and sense organs ; Voltage-sensitive channel</subject><ispartof>Brain research, 1994-11, Vol.663 (1), p.77-83</ispartof><rights>1994</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-cbc6de61b2f3d2f683ae4c6dd6fe9ec949eed8d00efe804e83e223d8df6505243</citedby><cites>FETCH-LOGICAL-c417t-cbc6de61b2f3d2f683ae4c6dd6fe9ec949eed8d00efe804e83e223d8df6505243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0006899394904642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3303126$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7850473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes de Lima, V.M.</creatorcontrib><creatorcontrib>Goldermann, M.</creatorcontrib><creatorcontrib>Hanke, W.R.L.</creatorcontrib><title>Calcium waves in gray matter are due to voltage-sensitive glial membrane channels</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be measured non-invasively with optical methods. Additionally, incubation with fluorescent dyes allows to follow calcium fluxes in parallel. The IOS can be divided into red and green scatter of light. We show that during spreading depression the red scatter signal precedes the green scatter signal and that calcium signal matches the red scatter signal. Incubation of the retina with barium chloride leads to a reversible depression of red scatter and calcium signal whereas the green scatter signal is hardly effected. The wave propagation velocity is reduced, too. This supports the idea that the early red scatter signal is a direct visualisation of glial membrane potential and that glia cells in the chicken retina are involved in the control of extracellular calcium.</description><subject>Animals</subject><subject>Barium - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Ca 2+ wave</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - drug effects</subject><subject>Calcium Channels - physiology</subject><subject>Cell Membrane - physiology</subject><subject>Chickens</subject><subject>Cortical Spreading Depression - physiology</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fluorescent Dyes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glial channel</subject><subject>In Vitro Techniques</subject><subject>Intrinsic optical signal</subject><subject>Light</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - physiology</subject><subject>Periaqueductal Gray - physiology</subject><subject>Retina</subject><subject>Retina - physiology</subject><subject>Scattering, Radiation</subject><subject>Spreading depression</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Voltage-sensitive channel</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rGzEQhkVIcB03_yAFHUJJD5vqa7WrSyCYpC0YQqA9C1madRS0u660u8X_vnJsfGxPw8w88zI8CF1TckcJlV8JIbKoleK3SnxRREhRsDM0p3XFCskEOUfzE_IBXab0llvOFZmhWVWXRFR8jl6WJlg_tviPmSBh3-FNNDvcmmGAiE0E7EbAQ4-nPgxmA0WCLvnBT4A3wZuAW2jX0XSA7avpOgjpI7poTEhwdawL9Ovp8efye7F6_vZj-bAqrKDVUNi1lQ4kXbOGO9bImhsQeeRkAwqsEgrA1Y4QaKAmAmoOjPE8aWRJSib4An0-5G5j_3uENOjWJwsh5Gf6MemqqrgsOf8vSKUsKyr3ieIA2tinFKHR2-hbE3eaEr1Xrvc-9d6nVkK_K9csn3065o_rFtzp6Og472-Oe5OsCU22ZX06YZwTTpnM2P0Byw5h8hB1sh46C85HsIN2vf_3H38B77Wdgw</recordid><startdate>19941107</startdate><enddate>19941107</enddate><creator>Fernandes de Lima, V.M.</creator><creator>Goldermann, M.</creator><creator>Hanke, W.R.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>19941107</creationdate><title>Calcium waves in gray matter are due to voltage-sensitive glial membrane channels</title><author>Fernandes de Lima, V.M. ; Goldermann, M. ; Hanke, W.R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-cbc6de61b2f3d2f683ae4c6dd6fe9ec949eed8d00efe804e83e223d8df6505243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Barium - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Ca 2+ wave</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - drug effects</topic><topic>Calcium Channels - physiology</topic><topic>Cell Membrane - physiology</topic><topic>Chickens</topic><topic>Cortical Spreading Depression - physiology</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fluorescent Dyes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glial channel</topic><topic>In Vitro Techniques</topic><topic>Intrinsic optical signal</topic><topic>Light</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - physiology</topic><topic>Periaqueductal Gray - physiology</topic><topic>Retina</topic><topic>Retina - physiology</topic><topic>Scattering, Radiation</topic><topic>Spreading depression</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Voltage-sensitive channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes de Lima, V.M.</creatorcontrib><creatorcontrib>Goldermann, M.</creatorcontrib><creatorcontrib>Hanke, W.R.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes de Lima, V.M.</au><au>Goldermann, M.</au><au>Hanke, W.R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium waves in gray matter are due to voltage-sensitive glial membrane channels</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>1994-11-07</date><risdate>1994</risdate><volume>663</volume><issue>1</issue><spage>77</spage><epage>83</epage><pages>77-83</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be measured non-invasively with optical methods. Additionally, incubation with fluorescent dyes allows to follow calcium fluxes in parallel. The IOS can be divided into red and green scatter of light. We show that during spreading depression the red scatter signal precedes the green scatter signal and that calcium signal matches the red scatter signal. Incubation of the retina with barium chloride leads to a reversible depression of red scatter and calcium signal whereas the green scatter signal is hardly effected. The wave propagation velocity is reduced, too. This supports the idea that the early red scatter signal is a direct visualisation of glial membrane potential and that glia cells in the chicken retina are involved in the control of extracellular calcium.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>7850473</pmid><doi>10.1016/0006-8993(94)90464-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 1994-11, Vol.663 (1), p.77-83
issn 0006-8993
1872-6240
language eng
recordid cdi_proquest_miscellaneous_77736533
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Barium - pharmacology
Biological and medical sciences
Ca 2+ wave
Calcium - metabolism
Calcium Channels - drug effects
Calcium Channels - physiology
Cell Membrane - physiology
Chickens
Cortical Spreading Depression - physiology
Eye and associated structures. Visual pathways and centers. Vision
Fluorescent Dyes
Fundamental and applied biological sciences. Psychology
Glial channel
In Vitro Techniques
Intrinsic optical signal
Light
Neuroglia - drug effects
Neuroglia - physiology
Periaqueductal Gray - physiology
Retina
Retina - physiology
Scattering, Radiation
Spreading depression
Vertebrates: nervous system and sense organs
Voltage-sensitive channel
title Calcium waves in gray matter are due to voltage-sensitive glial membrane channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20waves%20in%20gray%20matter%20are%20due%20to%20voltage-sensitive%20glial%20membrane%20channels&rft.jtitle=Brain%20research&rft.au=Fernandes%20de%20Lima,%20V.M.&rft.date=1994-11-07&rft.volume=663&rft.issue=1&rft.spage=77&rft.epage=83&rft.pages=77-83&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/0006-8993(94)90464-2&rft_dat=%3Cproquest_cross%3E77736533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16657164&rft_id=info:pmid/7850473&rft_els_id=0006899394904642&rfr_iscdi=true