Calcium waves in gray matter are due to voltage-sensitive glial membrane channels
The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be...
Gespeichert in:
Veröffentlicht in: | Brain research 1994-11, Vol.663 (1), p.77-83 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Brain research |
container_volume | 663 |
creator | Fernandes de Lima, V.M. Goldermann, M. Hanke, W.R.L. |
description | The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be measured non-invasively with optical methods. Additionally, incubation with fluorescent dyes allows to follow calcium fluxes in parallel. The IOS can be divided into red and green scatter of light. We show that during spreading depression the red scatter signal precedes the green scatter signal and that calcium signal matches the red scatter signal. Incubation of the retina with barium chloride leads to a reversible depression of red scatter and calcium signal whereas the green scatter signal is hardly effected. The wave propagation velocity is reduced, too. This supports the idea that the early red scatter signal is a direct visualisation of glial membrane potential and that glia cells in the chicken retina are involved in the control of extracellular calcium. |
doi_str_mv | 10.1016/0006-8993(94)90464-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77736533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0006899394904642</els_id><sourcerecordid>77736533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-cbc6de61b2f3d2f683ae4c6dd6fe9ec949eed8d00efe804e83e223d8df6505243</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVIcB03_yAFHUJJD5vqa7WrSyCYpC0YQqA9C1madRS0u660u8X_vnJsfGxPw8w88zI8CF1TckcJlV8JIbKoleK3SnxRREhRsDM0p3XFCskEOUfzE_IBXab0llvOFZmhWVWXRFR8jl6WJlg_tviPmSBh3-FNNDvcmmGAiE0E7EbAQ4-nPgxmA0WCLvnBT4A3wZuAW2jX0XSA7avpOgjpI7poTEhwdawL9Ovp8efye7F6_vZj-bAqrKDVUNi1lQ4kXbOGO9bImhsQeeRkAwqsEgrA1Y4QaKAmAmoOjPE8aWRJSib4An0-5G5j_3uENOjWJwsh5Gf6MemqqrgsOf8vSKUsKyr3ieIA2tinFKHR2-hbE3eaEr1Xrvc-9d6nVkK_K9csn3065o_rFtzp6Og472-Oe5OsCU22ZX06YZwTTpnM2P0Byw5h8hB1sh46C85HsIN2vf_3H38B77Wdgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16657164</pqid></control><display><type>article</type><title>Calcium waves in gray matter are due to voltage-sensitive glial membrane channels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fernandes de Lima, V.M. ; Goldermann, M. ; Hanke, W.R.L.</creator><creatorcontrib>Fernandes de Lima, V.M. ; Goldermann, M. ; Hanke, W.R.L.</creatorcontrib><description>The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be measured non-invasively with optical methods. Additionally, incubation with fluorescent dyes allows to follow calcium fluxes in parallel. The IOS can be divided into red and green scatter of light. We show that during spreading depression the red scatter signal precedes the green scatter signal and that calcium signal matches the red scatter signal. Incubation of the retina with barium chloride leads to a reversible depression of red scatter and calcium signal whereas the green scatter signal is hardly effected. The wave propagation velocity is reduced, too. This supports the idea that the early red scatter signal is a direct visualisation of glial membrane potential and that glia cells in the chicken retina are involved in the control of extracellular calcium.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/0006-8993(94)90464-2</identifier><identifier>PMID: 7850473</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Animals ; Barium - pharmacology ; Biological and medical sciences ; Ca 2+ wave ; Calcium - metabolism ; Calcium Channels - drug effects ; Calcium Channels - physiology ; Cell Membrane - physiology ; Chickens ; Cortical Spreading Depression - physiology ; Eye and associated structures. Visual pathways and centers. Vision ; Fluorescent Dyes ; Fundamental and applied biological sciences. Psychology ; Glial channel ; In Vitro Techniques ; Intrinsic optical signal ; Light ; Neuroglia - drug effects ; Neuroglia - physiology ; Periaqueductal Gray - physiology ; Retina ; Retina - physiology ; Scattering, Radiation ; Spreading depression ; Vertebrates: nervous system and sense organs ; Voltage-sensitive channel</subject><ispartof>Brain research, 1994-11, Vol.663 (1), p.77-83</ispartof><rights>1994</rights><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-cbc6de61b2f3d2f683ae4c6dd6fe9ec949eed8d00efe804e83e223d8df6505243</citedby><cites>FETCH-LOGICAL-c417t-cbc6de61b2f3d2f683ae4c6dd6fe9ec949eed8d00efe804e83e223d8df6505243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0006899394904642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3303126$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7850473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes de Lima, V.M.</creatorcontrib><creatorcontrib>Goldermann, M.</creatorcontrib><creatorcontrib>Hanke, W.R.L.</creatorcontrib><title>Calcium waves in gray matter are due to voltage-sensitive glial membrane channels</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be measured non-invasively with optical methods. Additionally, incubation with fluorescent dyes allows to follow calcium fluxes in parallel. The IOS can be divided into red and green scatter of light. We show that during spreading depression the red scatter signal precedes the green scatter signal and that calcium signal matches the red scatter signal. Incubation of the retina with barium chloride leads to a reversible depression of red scatter and calcium signal whereas the green scatter signal is hardly effected. The wave propagation velocity is reduced, too. This supports the idea that the early red scatter signal is a direct visualisation of glial membrane potential and that glia cells in the chicken retina are involved in the control of extracellular calcium.</description><subject>Animals</subject><subject>Barium - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Ca 2+ wave</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - drug effects</subject><subject>Calcium Channels - physiology</subject><subject>Cell Membrane - physiology</subject><subject>Chickens</subject><subject>Cortical Spreading Depression - physiology</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Fluorescent Dyes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glial channel</subject><subject>In Vitro Techniques</subject><subject>Intrinsic optical signal</subject><subject>Light</subject><subject>Neuroglia - drug effects</subject><subject>Neuroglia - physiology</subject><subject>Periaqueductal Gray - physiology</subject><subject>Retina</subject><subject>Retina - physiology</subject><subject>Scattering, Radiation</subject><subject>Spreading depression</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Voltage-sensitive channel</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rGzEQhkVIcB03_yAFHUJJD5vqa7WrSyCYpC0YQqA9C1madRS0u660u8X_vnJsfGxPw8w88zI8CF1TckcJlV8JIbKoleK3SnxRREhRsDM0p3XFCskEOUfzE_IBXab0llvOFZmhWVWXRFR8jl6WJlg_tviPmSBh3-FNNDvcmmGAiE0E7EbAQ4-nPgxmA0WCLvnBT4A3wZuAW2jX0XSA7avpOgjpI7poTEhwdawL9Ovp8efye7F6_vZj-bAqrKDVUNi1lQ4kXbOGO9bImhsQeeRkAwqsEgrA1Y4QaKAmAmoOjPE8aWRJSib4An0-5G5j_3uENOjWJwsh5Gf6MemqqrgsOf8vSKUsKyr3ieIA2tinFKHR2-hbE3eaEr1Xrvc-9d6nVkK_K9csn3065o_rFtzp6Og472-Oe5OsCU22ZX06YZwTTpnM2P0Byw5h8hB1sh46C85HsIN2vf_3H38B77Wdgw</recordid><startdate>19941107</startdate><enddate>19941107</enddate><creator>Fernandes de Lima, V.M.</creator><creator>Goldermann, M.</creator><creator>Hanke, W.R.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>19941107</creationdate><title>Calcium waves in gray matter are due to voltage-sensitive glial membrane channels</title><author>Fernandes de Lima, V.M. ; Goldermann, M. ; Hanke, W.R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-cbc6de61b2f3d2f683ae4c6dd6fe9ec949eed8d00efe804e83e223d8df6505243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Animals</topic><topic>Barium - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Ca 2+ wave</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - drug effects</topic><topic>Calcium Channels - physiology</topic><topic>Cell Membrane - physiology</topic><topic>Chickens</topic><topic>Cortical Spreading Depression - physiology</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Fluorescent Dyes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glial channel</topic><topic>In Vitro Techniques</topic><topic>Intrinsic optical signal</topic><topic>Light</topic><topic>Neuroglia - drug effects</topic><topic>Neuroglia - physiology</topic><topic>Periaqueductal Gray - physiology</topic><topic>Retina</topic><topic>Retina - physiology</topic><topic>Scattering, Radiation</topic><topic>Spreading depression</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Voltage-sensitive channel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes de Lima, V.M.</creatorcontrib><creatorcontrib>Goldermann, M.</creatorcontrib><creatorcontrib>Hanke, W.R.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes de Lima, V.M.</au><au>Goldermann, M.</au><au>Hanke, W.R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium waves in gray matter are due to voltage-sensitive glial membrane channels</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>1994-11-07</date><risdate>1994</risdate><volume>663</volume><issue>1</issue><spage>77</spage><epage>83</epage><pages>77-83</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>The retina is the most accessible piece of central gray matter in the vertebrate brain. Its wide dynamic operational range makes it the ideal neuronal network to study its excitability. Spreading depression waves in the retina are accompanied by strong intrinsic optical signals (IOS) and thus can be measured non-invasively with optical methods. Additionally, incubation with fluorescent dyes allows to follow calcium fluxes in parallel. The IOS can be divided into red and green scatter of light. We show that during spreading depression the red scatter signal precedes the green scatter signal and that calcium signal matches the red scatter signal. Incubation of the retina with barium chloride leads to a reversible depression of red scatter and calcium signal whereas the green scatter signal is hardly effected. The wave propagation velocity is reduced, too. This supports the idea that the early red scatter signal is a direct visualisation of glial membrane potential and that glia cells in the chicken retina are involved in the control of extracellular calcium.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>7850473</pmid><doi>10.1016/0006-8993(94)90464-2</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8993 |
ispartof | Brain research, 1994-11, Vol.663 (1), p.77-83 |
issn | 0006-8993 1872-6240 |
language | eng |
recordid | cdi_proquest_miscellaneous_77736533 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Barium - pharmacology Biological and medical sciences Ca 2+ wave Calcium - metabolism Calcium Channels - drug effects Calcium Channels - physiology Cell Membrane - physiology Chickens Cortical Spreading Depression - physiology Eye and associated structures. Visual pathways and centers. Vision Fluorescent Dyes Fundamental and applied biological sciences. Psychology Glial channel In Vitro Techniques Intrinsic optical signal Light Neuroglia - drug effects Neuroglia - physiology Periaqueductal Gray - physiology Retina Retina - physiology Scattering, Radiation Spreading depression Vertebrates: nervous system and sense organs Voltage-sensitive channel |
title | Calcium waves in gray matter are due to voltage-sensitive glial membrane channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20waves%20in%20gray%20matter%20are%20due%20to%20voltage-sensitive%20glial%20membrane%20channels&rft.jtitle=Brain%20research&rft.au=Fernandes%20de%20Lima,%20V.M.&rft.date=1994-11-07&rft.volume=663&rft.issue=1&rft.spage=77&rft.epage=83&rft.pages=77-83&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/0006-8993(94)90464-2&rft_dat=%3Cproquest_cross%3E77736533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16657164&rft_id=info:pmid/7850473&rft_els_id=0006899394904642&rfr_iscdi=true |